Вопрос задан 07.05.2019 в 11:04. Предмет Математика. Спрашивает Волкова Саша.

На ферме содержатся коровы, овцы, козы - всего 3320 животных. Коров на 120 меньше, чем овец, и на

100 больше, чем коз. Сколько на ферме коз?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Beridze Ramaz.
Пусть коз х, тогда коров 100+х, овец х+100+120=х+220, т.к. всего их 3320, составим уравнение:
х+100+х+х+220=3320
3х=3320-100-220=3000
х=3000/3=1000=>коз 1000, коров 1000+100=1100, овец - 1000+220=1220

Ответ:1000 коз.
PS: я тоже хочу такую ферму)
PPS: Добра вам :3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Number of Goats on the Farm

To determine the number of goats on the farm, we can use the information provided in the question. Let's break down the information step by step:

1. The total number of animals on the farm is 3320. 2. The number of cows is 120 less than the number of sheep. 3. The number of cows is 100 more than the number of goats.

Let's assign variables to the number of cows, sheep, and goats: - Let's represent the number of cows as C. - Let's represent the number of sheep as S. - Let's represent the number of goats as G.

Based on the given information, we can create the following equations:

1. The total number of animals on the farm is the sum of cows, sheep, and goats: - C + S + G = 3320

2. The number of cows is 120 less than the number of sheep: - C = S - 120

3. The number of cows is 100 more than the number of goats: - C = G + 100

To find the number of goats, we need to solve these equations simultaneously. Let's substitute the value of C from equation 3 into equation 1:

(G + 100) + S + G = 3320

Simplifying the equation:

2G + S + 100 = 3320

Rearranging the equation:

2G + S = 3220

Now, let's substitute the value of C from equation 2 into equation 1:

(S - 120) + S + G = 3320

Simplifying the equation:

2S + G = 3440

We now have a system of equations:

2G + S = 3220 (Equation A) 2S + G = 3440 (Equation B)

To solve this system of equations, we can use various methods such as substitution or elimination. Let's use the elimination method to find the values of G and S.

Multiplying Equation A by 2 and Equation B by -2:

4G + 2S = 6440 (Equation C) -4S - 2G = -6880 (Equation D)

Adding Equation C and Equation D:

4G + 2S - 4S - 2G = 6440 - 6880

Simplifying the equation:

2G - 2S = -440

Dividing the equation by 2:

G - S = -220 (Equation E)

Now, let's add Equation A and Equation B:

2G + S + 2S + G = 3220 + 3440

Simplifying the equation:

3G + 3S = 6660

Dividing the equation by 3:

G + S = 2220 (Equation F)

Now, we have a system of equations:

G - S = -220 (Equation E) G + S = 2220 (Equation F)

Adding Equation E and Equation F:

2G = 2000

Dividing the equation by 2:

G = 1000

Therefore, there are 1000 goats on the farm.

Please note that the above calculations are based on the information provided in the question and the equations derived from it.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос