Найти значение параметра k, при котором функция y=e^(kx )удовлетворяет уравнению y''+4y'+4y=0
Ответы на вопрос
        1. Сначала необходимо решить однородное ДУ второго порядка:
∡y'=t ⇒ t²+4t+4=0 ⇒ t₁,₂= -2. Уравнение имеет два действительных кратных корня, тогда общее решение будет записано в виде: y=C₁*e⁻²ˣ+С₂*х*е⁻²ˣ
Отсюда k=2.
            Я могу помочь вам решить эту задачу.
Для того, чтобы найти значение параметра k, при котором функция y = e^(kx) удовлетворяет уравнению y'' + 4y' + 4y = 0, нам нужно выполнить следующие шаги:
1. Найти первую и вторую производные функции y = e^(kx) по правилу дифференцирования показательной функции: y' = k * e^(kx) и y'' = k^2 * e^(kx). 2. Подставить эти производные в уравнение y'' + 4y' + 4y = 0 и получить: k^2 * e^(kx) + 4k * e^(kx) + 4 * e^(kx) = 0. 3. Вынести общий множитель e^(kx) и получить: (k^2 + 4k + 4) * e^(kx) = 0. 4. Решить квадратное уравнение k^2 + 4k + 4 = 0 относительно k, используя формулу корней: k = (-b ± √(b^2 - 4ac)) / 2a, где a = 1, b = 4 и c = 4. 5. Получить два значения параметра k: k = (-4 ± √(16 - 16)) / 2 = -2 и k = -2.
Ответ: Значение параметра k, при котором функция y = e^(kx) удовлетворяет уравнению y'' + 4y' + 4y = 0, равно -2. Это решение совпадает с одним из вариантов ответа . Надеюсь, это было полезно.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			