
Сколькими нулями оканчивается произведение чисел от 1 до 30 включительно


Ответы на вопрос




Произведение чисел от 1 до 30 включительно оканчивается на 6 нулей.
To arrive at this answer, we can calculate the factorial of 30, which is the product of all the numbers from 1 to 30. The factorial of a number n is denoted by n! and is calculated by multiplying all the numbers from 1 to n.
The factorial of 30 can be calculated as follows: 1! * 2! * 3! * ... * 30!
However, instead of calculating the entire factorial, we can focus on the number of trailing zeros in the factorial. The number of trailing zeros in a factorial is determined by the number of factors of 10 in the product. Since 10 is the product of 2 and 5, we need to count the number of pairs of 2 and 5 in the product.
In the range from 1 to 30, there are more factors of 2 than factors of 5. Therefore, we only need to count the number of factors of 5.
Let's calculate the number of factors of 5 in the range from 1 to 30:
- 5: 1 factor of 5 - 10: 1 factor of 5 - 15: 1 factor of 5 - 20: 1 factor of 5 - 25: 2 factors of 5 - 30: 1 factor of 5
Adding up the factors of 5, we get a total of 6 factors of 5 in the range from 1 to 30. Therefore, the product of the numbers from 1 to 30 ends with 6 zeros.
Please note that this calculation is based on the concept of counting factors of 5, and it is not necessary to calculate the entire factorial to determine the number of trailing zeros.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili