
Вопрос задан 06.05.2019 в 14:52.
Предмет Математика.
Спрашивает Красовская Алёна.
Найдите площадь треугольника ABC ,если вершина которого имеют координаты.а(0,2),b(3:2),C(1,4)


Ответы на вопрос

Отвечает Бахшалиева Сабина.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти площадь треугольника по координатам его вершин, можно воспользоваться формулой площади Герона или формулой площади через векторное произведение.
В данном случае воспользуемся вторым методом, так как у нас есть координаты вершин треугольника.
Пусть A(x₁, y₁), B(x₂, y₂), C(x₃, y₃) - координаты вершин треугольника ABC.
Площадь треугольника через векторное произведение можно вычислить по следующей формуле:
\[ S = \frac{1}{2} |x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)| \]
В вашем случае A(0, 2), B(3, 2), C(1, 4).
Подставим координаты в формулу:
\[ S = \frac{1}{2} |0(2 - 4) + 3(4 - 2) + 1(2 - 2)| \]
\[ S = \frac{1}{2} |0 + 6 + 0| \]
\[ S = \frac{1}{2} \times 6 = 3 \]
Таким образом, площадь треугольника ABC равна 3 квадратным единицам.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili