
Сколько существует 2014-значных чисел таких, что при вычёркивании его любой одной цифры получается
2013-значное число, и это 2013-значное число является делителем исходного числа (Напомним, что многозначное число не может начинаться с нуля и что на ноль ничего не делится, кроме, быть может, нуля)?

Ответы на вопрос

Из этого получаем, что все числа, у которых есть шанс оказаться хорошими, имеют вид ab0000...0, причем a, b — не нули. Вычёркивание нулей удовлетворяет условию, проверяем вычёркивание a и b.
Вычеркивание a: ab0000...0 делится на a0000...0, значит, 10a + b делится на a, откуда b делится на a.
Вычёркивание b: ab0000...0 делится на b0000...0, значит, 10a + b делится на b, откуда 10a делится на b.
b делится на a: обозначим b = ka, k — натуральное, не большее 9.
10a делится на b, значит, 10a делится на ka, k — делитель 10. Остаются варианты k = 1, 2 или 5.
k = 1: a = b, 9 вариантов (11... - 99...)
k = 2: b = 2a, 4 варианта (12..., 24..., 36..., 48)
k = 5: b = 5a, 1 вариант (15...)
Всего 9 + 4 + 1 = 14 чисел.



Number of 2014-Digit Numbers Meeting the Criteria
To find the number of 2014-digit numbers that meet the given criteria, we need to consider the properties of these numbers. Let's break down the requirements step by step.Step 1: Understanding the Criteria We are looking for 2014-digit numbers such that when any one of their digits is removed, the resulting 2013-digit number is a divisor of the original 2014-digit number.
Step 2: Analyzing the Criteria To solve this problem, we can start by considering the properties of the 2014-digit number and the 2013-digit number. We need to find a systematic approach to identify such numbers.
Step 3: Finding the Solution Given the complexity of the problem, it may require a more in-depth mathematical analysis to determine the exact number of 2014-digit numbers meeting the specified conditions.
Unfortunately, the search results provided do not directly address the specific mathematical problem presented. As a result, I don't have a specific numerical answer based on the search results available.
If you have further questions or need assistance with a different topic, feel free to ask!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili