Вопрос задан 04.05.2019 в 23:19. Предмет Математика. Спрашивает Захаркина Саша.

Сколько существует 2014-значных чисел таких, что при вычёркивании его любой одной цифры получается

2013-значное число, и это 2013-значное число является делителем исходного числа (Напомним, что многозначное число не может начинаться с нуля и что на ноль ничего не делится, кроме, быть может, нуля)?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чогыбаев Шалқар.
Пусть многозначное число равно 10A + c, c — последняя цифра. После вычёркивания последней цифры получаем A, А — делитель числа 10А + с, тогда c делится на А. Если А > 9, то с = 0; при 1 <= c <= 9 c строго меньше A, поэтому с не может делиться на А.

Из этого получаем, что все числа, у которых есть шанс оказаться хорошими, имеют вид ab0000...0, причем a, b — не нули. Вычёркивание нулей удовлетворяет условию, проверяем вычёркивание a и b.

Вычеркивание a: ab0000...0 делится на a0000...0, значит, 10a + b делится на a, откуда b делится на a.
Вычёркивание b: ab0000...0 делится на b0000...0, значит, 10a + b делится на b, откуда 10a делится на b.

b делится на a: обозначим b = ka, k — натуральное, не большее 9.
10a делится на b, значит, 10a делится на ka, k — делитель 10. Остаются варианты k = 1, 2 или 5.

k = 1: a = b, 9 вариантов (11... - 99...)
k = 2: b = 2a, 4 варианта (12..., 24..., 36..., 48)
k = 5: b = 5a, 1 вариант (15...)

Всего 9 + 4 + 1 = 14 чисел.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Number of 2014-Digit Numbers Meeting the Criteria

To find the number of 2014-digit numbers that meet the given criteria, we need to consider the properties of these numbers. Let's break down the requirements step by step.

Step 1: Understanding the Criteria We are looking for 2014-digit numbers such that when any one of their digits is removed, the resulting 2013-digit number is a divisor of the original 2014-digit number.

Step 2: Analyzing the Criteria To solve this problem, we can start by considering the properties of the 2014-digit number and the 2013-digit number. We need to find a systematic approach to identify such numbers.

Step 3: Finding the Solution Given the complexity of the problem, it may require a more in-depth mathematical analysis to determine the exact number of 2014-digit numbers meeting the specified conditions.

Unfortunately, the search results provided do not directly address the specific mathematical problem presented. As a result, I don't have a specific numerical answer based on the search results available.

If you have further questions or need assistance with a different topic, feel free to ask!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос