
Решить двумя спосабами. Пассажирский поезд отправился в Владивосток. Когда он был на расстоянии 342
км от станции отправления, от того же вокзала в том же направлении вышел скорый поезд. С какой скоростью шел скорый поезд, если скорость пассажирского 50км/ч, и скорый догнал его через 9 часов?

Ответы на вопрос

-------------
По формуле скорости вдогонку S=(v₁-v₂)×t, v₁>v₂
342÷9=38 км/ч-скорость сближения поездов
38+50=88 км/ч -скорость скорого поезда.
Способ 2
--------------
50×9+342=792 км прошел пассажирский поезд до встречи со скорым
792÷9=88 км/ч- скорость скорого поезда



Problem Analysis
We are given that a passenger train departed from a station and traveled a distance of 342 km. At the same time and in the same direction, a high-speed train also departed from the same station and caught up with the passenger train after 9 hours. We need to determine the speed at which the high-speed train was traveling.Solution 1: Using Relative Speed
To solve this problem, we can consider the relative speed between the two trains. The high-speed train catches up with the passenger train after 9 hours, which means that it covers the same distance that the passenger train covers in 9 hours. We can set up the following equation:Distance covered by the high-speed train = Distance covered by the passenger train
Let's denote the speed of the high-speed train as x km/h. The speed of the passenger train is given as 50 km/h. The time taken by both trains is 9 hours. The distance covered by the high-speed train is the same as the distance covered by the passenger train, which is 342 km.
Using the formula Distance = Speed × Time, we can write the equation as:
x × 9 = 50 × 9
Simplifying the equation, we get:
x = 50
Therefore, the speed of the high-speed train is 50 km/h.
Solution 2: Using Time and Distance
Another way to solve this problem is by considering the time and distance traveled by both trains. We know that the passenger train traveled a distance of 342 km in 9 hours. The speed of the passenger train is given as 50 km/h.Using the formula Distance = Speed × Time, we can write the equation as:
342 = 50 × 9
Simplifying the equation, we get:
342 = 450
This equation is not true, which means there is an error in our calculation. Let's try to find the correct solution.
Let's denote the speed of the high-speed train as x km/h. The time taken by both trains is 9 hours. The distance covered by the high-speed train is the same as the distance covered by the passenger train, which is 342 km.
Using the formula Distance = Speed × Time, we can write the equation as:
x × 9 = 342
Simplifying the equation, we get:
x = 342 / 9
Calculating the value, we find:
x = 38
Therefore, the speed of the high-speed train is 38 km/h.
Conclusion
There are two possible solutions to the problem. According to the first solution, the speed of the high-speed train is 50 km/h. According to the second solution, the speed of the high-speed train is 38 km/h. It is important to note that the given information does not specify which solution is correct.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili