Вопрос задан 04.05.2019 в 02:00. Предмет Математика. Спрашивает Руденко Элина.

В прямоугольнике проведена диагональ. Площадь одного из получившихся треугольников равна 25 см в

квадрате. Найдите площадь прямоугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Акатьева Кристина.
25*2=50(см²)-площадь прямоугольника
0 0
Отвечает Франк Ксюша.
Диагональ прямоугольника делит его на два равных треугольника. Поэтому площадь второго треугольника будет равна площади первого и равна 25 см². Площадь прямоугольника будет равна сумме площадей этих двух треугольников, т.е. 25+25=50 см²
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи воспользуемся следующими свойствами прямоугольника и треугольника:

1. Площадь прямоугольника равна произведению его сторон: S = a * b, где a и b - длины сторон прямоугольника.

2. Площадь треугольника равна половине произведения его основания и высоты: S = (1/2) * a * h, где a - длина основания, h - высота треугольника.

Пусть длины сторон прямоугольника равны a и b, а диагональ равна d. Так как диагональ делит прямоугольник на два равных треугольника, длины сторон треугольника равны a и b/2.

По условию, площадь одного из получившихся треугольников равна 25 квадратных сантиметров. Подставим значения в формулу для площади треугольника:

25 = (1/2) * a * (b/2)

Упростим выражение:

50 = a * (b/2)

Теперь у нас есть два уравнения:

1. a * b = S (площадь прямоугольника) 2. a * (b/2) = 50 (площадь одного из треугольников)

Из второго уравнения выразим a через b:

a = 100/b

Подставим это значение в первое уравнение:

(100/b) * b = S

100 = S

Таким образом, площадь прямоугольника равна 100 квадратных сантиметров.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос