
Помогите решить задачу! В первый магазин привезли в одинаковых бидонах 560 л молока, а во второй
магазин в таких же бидонах - 720 л. В первый магазин привезли молока на 4 бидона меньше. Сколько бидонов молока привезли в каждый магазин?

Ответы на вопрос




Пусть в первый магазин привезли x бидонов молока. Тогда во второй магазин привезли (x + 4) бидонов молока.
По условию задачи, в первом магазине привезли 560 л молока, а во втором магазине привезли 720 л молока. Так как в каждом бидоне одинаковое количество молока, то можно составить следующие уравнения:
560 = x * y, где y - количество литров молока в каждом бидоне первого магазина; 720 = (x + 4) * y, где y - количество литров молока в каждом бидоне второго магазина.
Решим первое уравнение относительно y:
y = 560 / x.
Подставим это значение во второе уравнение:
720 = (x + 4) * (560 / x).
Упростим это уравнение:
720 = (560(x + 4)) / x.
Умножим обе части уравнения на x:
720x = 560(x + 4).
Раскроем скобки:
720x = 560x + 2240.
Перенесем все члены с x на одну сторону:
720x - 560x = 2240.
Выполним вычисления:
160x = 2240.
Разделим обе части уравнения на 160:
x = 2240 / 160.
x = 14.
Таким образом, в первый магазин привезли 14 бидонов молока, а во второй магазин привезли 14 + 4 = 18 бидонов молока.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili