Вопрос задан 01.05.2019 в 15:59. Предмет Математика. Спрашивает Илесов Батыр.

Многоугольник составлен из прямоугольников: ABCD, MKLN, EFHS. АВ = 2см, ВС = 5см, MK = 3см, KL =

4см, EF = 1см, FH = 7см. Найдите площадь многоугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Салеев Тимур.
Площадь этого многоугольника состоит из суммы площадей этих многоугольников   :(2*5)+(3*4)+(1*7)=29(кв см)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади многоугольника, составленного из прямоугольников ABCD, MKLN, EFHS, нужно сложить площади каждого прямоугольника.

Площадь прямоугольника ABCD: AB = 2 см BC = 5 см Площадь ABCD = AB * BC = 2 см * 5 см = 10 см²

Площадь прямоугольника MKLN: MK = 3 см KL = 4 см Площадь MKLN = MK * KL = 3 см * 4 см = 12 см²

Площадь прямоугольника EFHS: EF = 1 см FH = 7 см Площадь EFHS = EF * FH = 1 см * 7 см = 7 см²

Теперь сложим площади всех прямоугольников: 10 см² + 12 см² + 7 см² = 29 см²

Итак, площадь многоугольника, составленного из прямоугольников ABCD, MKLN, EFHS, равна 29 см².

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос