Вопрос задан 30.04.2019 в 22:42. Предмет Математика. Спрашивает Григоренко Оксана.

Велосипедист и мотоциклист выехали одновременно из одного пункта в одном направлении. Скорость

мотоциклиста 40 км/ч, а велосипедиста 12 км/ч. Какова скорость их удаления друг от друга? Через сколько часов расстояние между ними будет 56 км?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Светашев Никита.
1) Найдем скорость удаления:
40 - 12 = 28 км/час;     
2) Теперь рассчитаем время, когда между ними будет расстояние в 56 км:  56 : 28 = 2 ч.

Ответ: Через 2 часа между ними будет 56 км.
0 0
Отвечает Сабуров Владимир.
Скорость удаления 40-12=28 (км/ч).
Расстояние 56 км будет через 56/28=2 часа.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a cyclist and a motorcyclist start simultaneously from the same point in the same direction. The motorcyclist's speed is 40 km/h, and the cyclist's speed is 12 km/h. We need to determine the rate at which they are moving away from each other and the time it takes for the distance between them to be 56 km.

Solution

To find the rate at which they are moving away from each other, we can subtract the cyclist's speed from the motorcyclist's speed. The difference in their speeds represents the rate at which they are moving apart.

The rate of separation is given by:

Rate of separation = Motorcyclist's speed - Cyclist's speed

Substituting the given values:

Rate of separation = 40 km/h - 12 km/h

To find the time it takes for the distance between them to be 56 km, we can use the formula:

Distance = Rate × Time

Rearranging the formula to solve for time:

Time = Distance / Rate

Substituting the given values:

Time = 56 km / (40 km/h - 12 km/h)

Now we can calculate the rate of separation and the time it takes for the distance between them to be 56 km.

Calculation

Let's calculate the rate of separation and the time it takes for the distance between them to be 56 km.

Rate of separation = 40 km/h - 12 km/h = 28 km/h Time = 56 km / 28 km/h = 2 hours

Therefore, the rate at which they are moving away from each other is 28 km/h, and it will take 2 hours for the distance between them to be 56 km.

Please let me know if I can help you with anything else.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a cyclist and a motorcyclist start simultaneously from the same point in the same direction. The motorcyclist's speed is 40 km/h, and the cyclist's speed is 12 km/h. We need to determine the speed at which they are moving away from each other and the time it takes for the distance between them to be 56 km.

Calculation

To find the speed at which they are moving away from each other, we can subtract the cyclist's speed from the motorcyclist's speed:

Speed of separation = Motorcyclist's speed - Cyclist's speed

Substituting the given values:

Speed of separation = 40 km/h - 12 km/h

To find the time it takes for the distance between them to be 56 km, we can use the formula:

Distance = Speed × Time

Rearranging the formula to solve for time:

Time = Distance / Speed

Substituting the given values:

Time = 56 km / (40 km/h - 12 km/h)

Now, let's calculate the speed of separation and the time it takes for the distance between them to be 56 km.

Calculation Results

The speed of separation between the motorcyclist and the cyclist is 28 km/h.

The time it takes for the distance between them to be 56 km is 2 hours.

Therefore, the speed at which they are moving away from each other is 28 km/h, and it takes 2 hours for the distance between them to be 56 km.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос