Вопрос задан 30.04.2019 в 21:56. Предмет Математика. Спрашивает Коробейникова Анастасия.

Solve y''+3y'+2y=e^-2x using D operator

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хорошайлова Влада.
y''+3y'+2y=e^{-2x}

Решение: Запишем операторное уравнение
где y(x)*D=y', y(x)*D^2=y"
         

y(x)*D^2 + 3y(x)*D + 2y(x) = e^{-2x}

y(x)(D^2 + 3D + 2) = e^{-2x}

y(x)(D+2)(D + 1) = e^{-2x}

y(x) =  \frac{1}{(D+2)(D + 1)}*e^{-2x}

Применям правило

 \frac{1}{M_1(D)*M_2(D)}f(x)= \frac{1}{M_1(D)}* \frac{1}{M_2(D)}f(x)

y(x) = \frac{1}{D+2}*\frac{1}{D + 1}*e^{-2x}

Применяем правило

 \frac{1}{M(D)}e^{\lambda*x}= \frac{1}{M(\lambda)}e^{\lambda*x},(M(\lambda) \neq 0)

y(x) = \frac{1}{D+2}*\frac{1}{-2+ 1}*e^{-2x}

y(x) = \frac{1}{D+2}*(-1)*e^{-2x}

y(x) = -\frac{1}{D+2}*e^{-2x}

Применяем правило

 \frac{1}{M(D)}e^{\lambda*x}*g(x)= e^{\lambda*x}* \frac{1}{M(D+\lambda)}*g(x)

У нас g(x)=1

y(x) = -e^{-2x}\frac{1}{D+2-2}*1

y(x) = -e^{-2x}\frac{1}{D}*1

Применяем правило

\frac{1}{D}*g(x)= \int\limits {gx} \, dx

\frac{1}{D}*1= \int\limits {} \, dx=x

Следовательно искомая функция равна

y(x) = -xe^{-2x}

Проверка

y'(x) = 2xe^{-2x}-e^{-2x}

y''(x) = -4xe^{-2x}+2e^{-2x}+2e^{-2x}=-4xe^{-2x}+4e^{-2x}

Подставляем в исходное дифференциальное уравнение

y''+3y'+2y=-4xe^{-2x}+4e^{-2x}+3(2xe^{-2x}-e^{-2x})+2(-xe^{-2x})=-4xe^{-2x}+4e^{-2x}+6xe^{-2x}-3e^{-2x}-2xe^{-2x}=e^{-2x}

Следовательно решение правильное.


Ответ: y=-x*e^(-2x)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the second-order linear homogeneous differential equation y'' + 3y' + 2y = e^(-2x) using the method of the D operator, we can follow these steps:

1. Find the Characteristic Equation: The characteristic equation of the given homogeneous differential equation is obtained by substituting y = e^(rx) into the equation. This gives us the characteristic equation:

r^2 + 3r + 2 = 0

2. Solve the Characteristic Equation: To solve the characteristic equation, we find the roots by factoring or using the quadratic formula. The roots of the characteristic equation will give us the form of the solution to the homogeneous differential equation.

The characteristic equation factors as (r+2)(r+1) = 0, so the roots are r = -2 and r = -1.

3. Form the Complementary Function (CF): The complementary function (CF) is the general solution to the homogeneous differential equation. It is given by the linear combination of the fundamental set of solutions corresponding to the distinct roots of the characteristic equation.

The general form of the complementary function is: y_CF = c1 * e^(-2x) + c2 * e^(-x)

where c1 and c2 are arbitrary constants.

4. Find the Particular Solution (Particular Integral): To find the particular solution to the non-homogeneous differential equation (due to the e^(-2x) term on the right-hand side), we use the method of undetermined coefficients or variation of parameters.

For the method of undetermined coefficients, we can assume a particular solution of the form: y_p = A * e^(-2x)

where A is a constant to be determined.

5. Determine the Value of A: Substitute the assumed particular solution into the original non-homogeneous differential equation and solve for the undetermined coefficient A.

Plugging y_p into the equation y'' + 3y' + 2y = e^(-2x) and simplifying, we can solve for the value of A.

6. Form the General Solution: The general solution to the non-homogeneous differential equation is the sum of the complementary function (CF) and the particular solution (Particular Integral).

The general solution is: y = y_CF + y_p

where y_CF is the complementary function and y_p is the particular solution.

By substituting the values of c1, c2, and A, we can obtain the complete general solution to the non-homogeneous differential equation.

Would you like to see the step-by-step solution with the specific values of the constants and the final general solution?

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос