
Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с
постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути – со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.

Ответы на вопрос




Problem Analysis
We are given that two cars simultaneously traveled from point A to point B. The first car traveled the entire distance at a constant speed. The second car traveled the first half of the distance at a speed of 24 km/h and the second half at a speed 16 km/h faster than the first car. The second car arrived at point B at the same time as the first car. We need to find the speed of the first car in km/h.Solution
Let's assume the distance from point A to point B is d km.The first car traveled the entire distance at a constant speed, so the time taken by the first car is given by:
Time taken by first car = Distance / Speed of first car
The second car traveled the first half of the distance at a speed of 24 km/h and the second half at a speed 16 km/h faster than the first car. So, the time taken by the second car is given by:
Time taken by second car = (Distance / 2) / 24 + (Distance / 2) / (Speed of first car + 16)
Since both cars arrived at point B at the same time, the time taken by both cars is equal. Therefore, we can set up the following equation:
(Distance / Speed of first car) = (Distance / 2) / 24 + (Distance / 2) / (Speed of first car + 16)
Now, let's solve this equation to find the speed of the first car.
Calculation
Let's solve the equation step by step:(Distance / Speed of first car) = (Distance / 2) / 24 + (Distance / 2) / (Speed of first car + 16)
Multiplying both sides of the equation by the Speed of first car:
Distance = (Distance / 2) * (Speed of first car) / 24 + (Distance / 2)
Multiplying both sides of the equation by 24:
24 * Distance = (Distance / 2) * (Speed of first car) + 12 * Distance
Simplifying the equation:
24 * Distance = (Distance * (Speed of first car)) / 2 + 12 * Distance
Multiplying both sides of the equation by 2:
48 * Distance = Distance * (Speed of first car) + 24 * Distance
Combining like terms:
48 * Distance = (Speed of first car) * Distance + 24 * Distance
Subtracting Distance from both sides of the equation:
47 * Distance = (Speed of first car) * Distance
Dividing both sides of the equation by Distance:
47 = Speed of first car
Therefore, the speed of the first car is 47 km/h.
Answer
The speed of the first car is 47 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili