Вопрос задан 28.04.2019 в 03:36. Предмет Математика. Спрашивает Георгиев Максим.

1)В двух ящиках восемнадцать целых одна третья кг мовкови.Масса моркови,лежащей в первом

ящике,составляет две третьи от массы моркови,лежащей во втором ящике.Сколько кг моркови лежит в каждом ящике?2)Длина дороги 10 целых две седьмых км.Заасфальтированная часть составляет пять седьмых незаасфальтированной части.Сколько км состовляет каждая часть?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тастемір Акжол.
5/3-18 1/3 кг
найти сколько составляет 1 целая
55/3:5/3=55/3*3/5=11
в первом ящике 11 кг во втором 8 1/3 кг
2) 12/7 - 72/7 сколько составляет 1 целая
72/7:12/7=72/7*7/12=6
ответ заасфальтированная  часть 6 км не заасфальтированная 4 2/7 км
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение математических задач

1) Пусть \( x \) - масса моркови в первом ящике в кг, а \( y \) - масса моркови во втором ящике в кг.

Из условия задачи у нас есть два уравнения: - В первом ящике: \( x + y = 18 \) (восемнадцать целых) - Во втором ящике: \( \frac{2}{3}x = \frac{1}{3}y \) (одна третья кг)

Решим систему уравнений: - Умножим оба уравнения во втором ящике на 3, чтобы избавиться от дробей: \( 2x = y \) - Подставим \( y = 2x \) в первое уравнение: \( x + 2x = 18 \) - Получаем: \( 3x = 18 \) - Решив уравнение, получаем: \( x = 6 \) - Теперь найдем \( y \): \( y = 2x = 2*6 = 12 \)

Ответ: - В первом ящике лежит 6 кг моркови. - Во втором ящике лежит 12 кг моркови.

2) Пусть \( a \) - длина заасфальтированной части дороги в км, а \( b \) - длина незаасфальтированной части дороги в км.

Из условия задачи у нас есть уравнение: - Длина дороги: \( a + b = 10 \) (десять целых две седьмых км) - Заасфальтированная часть: \( \frac{5}{7}a \) - Незаасфальтированная часть: \( \frac{2}{7}a \)

Решим систему уравнений: - Подставим \( a = \frac{5}{7}a \) и \( b = \frac{2}{7}a \) в уравнение длины дороги: \( \frac{5}{7}a + \frac{2}{7}a = 10 \) - Получаем: \( \frac{7}{7}a = 10 \) - Решив уравнение, получаем: \( a = 10 \) - Теперь найдем \( b \): \( b = 10 - a = 10 - 10 = 0 \)

Ответ: - Заасфальтированная часть дороги составляет 10 км. - Незаасфальтированная часть дороги составляет 0 км.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос