
Вопрос задан 27.04.2019 в 16:51.
Предмет Математика.
Спрашивает Иванов Сос.
4 sin2 x -3sin-1=0 ПОМОГИТЕ СРОЧНО пожалуйста


Ответы на вопрос

Отвечает Тельнов Олег.
4 sinx*cosx -3 sinx = 1
sinx*(4cosx-3)=1
sinx=1 4cosx-3=1
x=pi/2+2pi*n cosx=1
x=2pi*n
sinx*(4cosx-3)=1
sinx=1 4cosx-3=1
x=pi/2+2pi*n cosx=1
x=2pi*n



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения уравнения 4sin^2(x) - 3sin(x) - 1 = 0, мы можем использовать методы алгебры и тригонометрии. Давайте разберемся подробнее.
Перепишем уравнение:
4sin^2(x) - 3sin(x) - 1 = 0Заметим, что данное уравнение является квадратным относительно sin(x). Мы можем решить его, используя методы решения квадратных уравнений.
Проведем замену:
Пусть t = sin(x). Тогда уравнение примет вид: 4t^2 - 3t - 1 = 0Решим полученное квадратное уравнение:
Мы можем использовать формулу дискриминанта для нахождения корней квадратного уравнения. Дискриминант D вычисляется по формуле D = b^2 - 4ac, где a = 4, b = -3 и c = -1.Вычислим дискриминант:
D = (-3)^2 - 4 * 4 * (-1) = 9 + 16 = 25Так как дискриминант положительный, у нас есть два различных корня:
t1 = (-b + sqrt(D)) / (2a) = (-(-3) + sqrt(25)) / (2 * 4) = (3 + 5) / 8 = 8/8 = 1 t2 = (-b - sqrt(D)) / (2a) = (-(-3) - sqrt(25)) / (2 * 4) = (3 - 5) / 8 = -2/8 = -1/4Теперь найдем значения sin(x), используя найденные значения t:
sin(x) = t1 = 1 sin(x) = t2 = -1/4Найдем все значения x, удовлетворяющие уравнению:
Для sin(x) = 1: x = arcsin(1) + 2πn = π/2 + 2πn, где n - целое числоДля sin(x) = -1/4: x = arcsin(-1/4) + 2πn = -0.2527 + 2πn, где n - целое число
Таким образом, решением уравнения 4sin^2(x) - 3sin(x) - 1 = 0 являются все значения x, которые можно получить, добавив к π/2 и -0.2527 кратное 2π.
Примечание: Пожалуйста, обратите внимание, что значения, полученные в данном ответе, основаны на математических вычислениях и могут быть округлены для удобства чтения. Пожалуйста, уточните значения, если точность очень важна для вашего конкретного случая.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili