Вопрос задан 01.03.2019 в 12:54. Предмет Математика. Спрашивает Гайфутдинов Тима.

Найди закономерность и по которым составлены ряды чисел и Продолжи каждый из них на несколько чисел

298 287 265 232 188... 1280 640 320 160 80... 2 3 5 8 13 21 ...Составь свои ряды, используя многозначные числа и другие закономерности
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перов Ян.
1. 298 -11 = 287 - 22 = 265 - 33 = 232 - 44 = 188 - 55 = 133 - 66 = 67
2. 1280/2 = 640/2 = 320/2 = 160/2 = 80/2 = 40/2 = 20/2 = 10 ...
3. Ряд Фибоначчи, где каждый следующий член равен сумме двух предыдущих: 2 3 5 8 13 21 34 ...
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Pattern in the First Sequence: 298, 287, 265, 232, 188...

To identify the pattern in the first sequence, let's examine the differences between consecutive terms:

- The difference between 298 and 287 is 11. - The difference between 287 and 265 is 22. - The difference between 265 and 232 is 33. - The difference between 232 and 188 is 44.

From these differences, we can observe that each subsequent difference increases by 11. Therefore, we can conclude that the pattern in the first sequence is that each term is obtained by subtracting an increasing multiple of 11 from the previous term.

To continue the sequence, we can apply the same pattern:

- To find the next term, we subtract 55 from 188: 188 - 55 = 133. - To find the term after that, we subtract 66 from 133: 133 - 66 = 67.

So, the extended sequence would be: 298, 287, 265, 232, 188, 133, 67.

Pattern in the Second Sequence: 2, 3, 5, 8, 13, 21...

To identify the pattern in the second sequence, let's examine the differences between consecutive terms:

- The difference between 3 and 2 is 1. - The difference between 5 and 3 is 2. - The difference between 8 and 5 is 3. - The difference between 13 and 8 is 5. - The difference between 21 and 13 is 8.

From these differences, we can observe that each subsequent difference is obtained by adding the previous two differences. This pattern is known as the Fibonacci sequence, where each term is the sum of the two preceding terms.

To continue the sequence, we can apply the same pattern:

- To find the next term, we add 8 to 21: 21 + 8 = 29. - To find the term after that, we add 13 to 29: 29 + 13 = 42.

So, the extended sequence would be: 2, 3, 5, 8, 13, 21, 29, 42.

Creating New Sequences with Multi-Digit Numbers and Other Patterns

Now, let's create new sequences using multi-digit numbers and other patterns:

1. Sequence of Squares: - Starting with 1, each term is obtained by squaring the previous term. - The sequence would be: 1, 1^2 = 1, 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2 = 1^2

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос