Вопрос задан 01.03.2019 в 00:52. Предмет Математика. Спрашивает Сенють Настя.

Три измерения прямоугольного параллепипеда равна 6,8,9 см найти V и сумму площадей всех его граней

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белоумцев Вадим.
V = 6 * 8 * 9 = 432 см³ - объём.
S = (6*8 + 6*9 + 9*8) * 2 = 348 см² - площадь всей поверхности.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Volume and Sum of Surface Areas

To find the volume and sum of the surface areas of a rectangular parallelepiped with dimensions 6 cm, 8 cm, and 9 cm, we can use the following formulas:

Volume of a rectangular parallelepiped: The volume (V) of a rectangular parallelepiped is calculated by multiplying its length (l), width (w), and height (h): V = l * w * h

Sum of the surface areas of a rectangular parallelepiped: The sum of the surface areas of a rectangular parallelepiped is calculated by adding the areas of all its six faces: Sum of surface areas = 2lw + 2lh + 2wh

Let's calculate the volume and sum of the surface areas using the given dimensions.

Calculation:

Given dimensions: Length (l) = 6 cm Width (w) = 8 cm Height (h) = 9 cm

Volume (V) calculation: V = l * w * h V = 6 cm * 8 cm * 9 cm V = 432 cm³

Sum of surface areas calculation: Sum of surface areas = 2lw + 2lh + 2wh Sum of surface areas = 2 * 6 cm * 8 cm + 2 * 6 cm * 9 cm + 2 * 8 cm * 9 cm Sum of surface areas = 96 cm² + 108 cm² + 144 cm² Sum of surface areas = 348 cm²

Therefore, the volume (V) of the rectangular parallelepiped is 432 cm³, and the sum of the surface areas of all its faces is 348 cm².

Please let me know if there is anything else I can help you with!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос