Вопрос задан 01.03.2019 в 00:28. Предмет Математика. Спрашивает Зубова Ксюха.

Произведение двух число равно 24,а их сумма равна 11.найдите эти числа путём подбора

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Kalabishka Diana.
8•3=24.
8+3=11
Ответ:8 и 3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть два числа, которые мы ищем, обозначены как x и y.

Условие задачи гласит, что произведение этих чисел равно 24:

xy = 24

Также условие утверждает, что их сумма равна 11:

x + y = 11

Мы можем решить эту систему уравнений методом подбора.

Подставим второе уравнение в первое:

x(11 - x) = 24

Раскроем скобки:

11x - x^2 = 24

Перенесем все члены уравнения в левую часть:

x^2 - 11x + 24 = 0

Теперь решим это квадратное уравнение. Мы можем разложить его на множители или использовать квадратное уравнение по формуле.

Получим два возможных варианта:

1) x^2 - 11x + 24 = (x - 3)(x - 8) = 0

Тогда x1 = 3 и x2 = 8.

2) x^2 - 11x + 24 = (x - 4)(x - 6) = 0

Тогда x3 = 4 и x4 = 6.

Теперь найдем соответствующие значения y, используя уравнение x + y = 11:

1) Когда x = 3, y = 11 - 3 = 8. 2) Когда x = 8, y = 11 - 8 = 3. 3) Когда x = 4, y = 11 - 4 = 7. 4) Когда x = 6, y = 11 - 6 = 5.

Итак, мы нашли четыре пары чисел, удовлетворяющих условию задачи:

1) 3 и 8 2) 8 и 3 3) 4 и 7 4) 6 и 5

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос