Вопрос задан 28.02.2019 в 05:19. Предмет Математика. Спрашивает Дедук Вова.

Вычислить (1 : 6/11 - 2[целых]3/4 * 0,5) * 4[целых]4/11 |||||||||||||||| Решить уравнение

x^2+2x-3=0 Жду ответика, сяп, лафки лафки
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Инесса.
(1 : 6/11 - 2  3/4 * 0,5) * 4  4/11=(1*11/6 - 11/4 * 0,5) * 48/11=
=(11/6 - 11/8) * 48/11=(44/24 - 33/24) * 48/11=11/24*48/11=48/24=2

x^2+2x-3=0
D = b² - 4ac = 22 - 4·1·(-3) = 4 + 12 = 16
x1 = (-2 - √16)/(2·1) = (-2 - 4)/2 = -6/2 = -3
x2 = (-2 + √16)/(2·1) = (-2 + 4)/2 = 2/2 = 1
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с вычисления выражения (1 + 6/11 - 2[целых]3/4 * 0,5) * 4[целых]4/11.

1 + 6/11 = 11/11 + 6/11 = 17/11

2[целых]3/4 * 0,5 = (2 * 4 + 3/4) * 0,5 = (8 + 3/4) * 0,5 = (8 * 4 + 3) / 4 * 0,5 = (32 + 3) / 4 * 0,5 = 35/4 * 0,5 = 35/8

Теперь мы можем подставить значения обратно в исходное выражение:

(17/11 - 35/8) * 4[целых]4/11

Для начала, давайте приведем дроби к общему знаменателю:

(17/11 - 35/8) * 4[целых]4/11 = (136/88 - 385/88) * 4[целых]4/11 = (-249/88) * 4[целых]4/11

Теперь у нас есть выражение, в котором только целые числа. Мы можем умножить -249 на 4, а затем добавить 4/11.

-249 * 4 = -996

Теперь у нас есть -996[целых]4/11. Добавление 4/11 дает нам окончательный ответ:

-996[целых]4/11 + 4/11 = -996[целых]8/11

Таким образом, результат вычисления исходного выражения равен -996[целых]8/11.

Теперь решим уравнение x^2 + 2x - 3 = 0.

Давайте воспользуемся квадратным корнем:

x = (-b ± sqrt(b^2 - 4ac)) / (2a)

Здесь a = 1, b = 2 и c = -3. Подставим эти значения в формулу:

x = (-2 ± sqrt(2^2 - 4 * 1 * -3)) / (2 * 1) = (-2 ± sqrt(4 + 12)) / 2 = (-2 ± sqrt(16)) / 2 = (-2 ± 4) / 2

Теперь мы можем разбить это на два случая:

1) x = (-2 + 4) / 2 = 2 / 2 = 1

2) x = (-2 - 4) / 2 = -6 / 2 = -3

Таким образом, уравнение x^2 + 2x - 3 = 0 имеет два решения: x = 1 и x = -3.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос