
Алгебра,умоляю,сейчас уже к/р срочно пожалуйста 1)sin765градусов Cos19П:6 2)cos(a-b)-cos(a+b)
a-альфа , b-бетта 3)решите уравнение 2sin * x/2=1-cos * x

Ответы на вопрос

cos19п/6=cos570=cos(540+30)=-sin30=-1/2
2)cos(a-b)-cos(a+b)=cosacosb+sinasinb-cosacosb+sinasinb=2sinasinb
3) 2sinx/2=1-cosx тут если смогу решить в скором времени в комментарии добавлю



1) sin 765 градусов, cos 19π/6
To find the values of sin 765 degrees and cos 19π/6, we can use the properties of the unit circle and the periodicity of trigonometric functions.
1) sin 765 degrees:
Since the sine function has a period of 360 degrees (or 2π radians), we can find an equivalent angle within a single period.
765 degrees is equivalent to 765 - 360 = 405 degrees.
Now, we can use the fact that sine is an odd function, which means sin(-x) = -sin(x).
sin 405 degrees = -sin(-405 degrees)
Using a reference angle of 45 degrees, we can find the values of sine:
sin 405 degrees = -sin(405 - 360) = -sin 45 degrees = -√2/2.
Therefore, sin 765 degrees = -√2/2.
2) cos(a - b) - cos(a + b) + a - α, b - β:
To simplify the expression cos(a - b) - cos(a + b) + a - α, b - β, we can use the trigonometric identities.
cos(a - b) = cos a * cos b + sin a * sin b cos(a + b) = cos a * cos b - sin a * sin b
Substituting these values into the expression:
cos(a - b) - cos(a + b) + a - α, b - β = (cos a * cos b + sin a * sin b) - (cos a * cos b - sin a * sin b) + a - α, b - β = 2 * sin a * sin b + a - α, b - β
Please provide the values of a, α, b, and β so that we can further simplify the expression.
3) Solve the equation 2sin(x/2) = 1 - cos(x):
To solve the equation 2sin(x/2) = 1 - cos(x), we can use the double-angle identity for sine and the identity sin^2(x) + cos^2(x) = 1.
First, let's rewrite the equation using the double-angle identity:
2sin(x/2) = 1 - cos(x) 2 * 2sin^2(x/2) = 1 - (1 - 2sin^2(x/2)) 4sin^2(x/2) = 2sin^2(x/2) 2sin^2(x/2) = 0
Now, we have a quadratic equation. Let's solve it:
sin^2(x/2) = 0
Taking the square root of both sides:
sin(x/2) = 0
Since sin(x/2) = 0, we know that x/2 must be an integer multiple of π.
Therefore, x/2 = nπ, where n is an integer.
Solving for x:
x = 2nπ, where n is an integer.
So the general solution to the equation 2sin(x/2) = 1 - cos(x) is x = 2nπ, where n is an integer.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili