
Вопрос задан 27.02.2019 в 14:52.
Предмет Математика.
Спрашивает Лепешков Влад.
Если m и k натуральные числа и m + k = 2m + 4,то какие из следуйщих утверждений верны:1) m -
четное2)k - четное3) k - m - четное4)если m четное,то и k четное?Сделайте пожалуйста,с объяснением,а не так "ДА,Верно.НЕТ,не верно"

Ответы на вопрос

Отвечает Лукоянов Колян.
1) 4 верно, так как если m-четное, то и к-четное
Например м-2, то к-4
2+4=2*2+2
Например если не четное , то м-3 к-7
3+7=3*2+4
Например м-2, то к-4
2+4=2*2+2
Например если не четное , то м-3 к-7
3+7=3*2+4



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Problem Analysis
We are given that `m` and `k` are natural numbers and `m + k = 2m + 4`. We need to determine which of the following statements are true: 1) `m` is even. 2) `k` is even. 3) `k - m` is even. 4) If `m` is even, then `k` is even.Let's analyze each statement one by one.
Statement 1: `m` is even
To determine if `m` is even, we can rearrange the given equation `m + k = 2m + 4` to isolate `m` on one side: ``` m = k - 4 ``` From this equation, we can see that `m` is expressed as the difference between `k` and a constant value of 4. Since `k` is a natural number, `m` will also be a natural number. However, we cannot determine if `m` is even or odd based on this equation alone.Statement 2: `k` is even
Similarly, to determine if `k` is even, we can rearrange the given equation `m + k = 2m + 4` to isolate `k` on one side: ``` k = 2m + 4 - m k = m + 4 ``` From this equation, we can see that `k` is expressed as the sum of `m` and a constant value of 4. Since `m` is a natural number, `k` will also be a natural number. However, we cannot determine if `k` is even or odd based on this equation alone.Statement 3: `k - m` is even
To determine if `k - m` is even, we can substitute the expression for `k` from the previous equation into the given equation `m + k = 2m + 4`: ``` m + (m + 4) = 2m + 4 2m + 4 = 2m + 4 ``` From this equation, we can see that `k - m` simplifies to 4. Since 4 is an even number, we can conclude that `k - m` is indeed even.Statement 4: If `m` is even, then `k` is even
To determine if this statement is true, we need to consider the equation `m + k = 2m + 4`. If `m` is even, we can express it as `m = 2x` for some natural number `x`. Substituting this into the equation, we get: ``` 2x + k = 4x + 4 k = 2x + 4 ``` From this equation, we can see that `k` is expressed as the sum of `2x` and a constant value of 4. Since `2x` is always even (as it is a multiple of 2), `k` will also be even. Therefore, statement 4 is true.Summary of Results
Based on our analysis, we can conclude the following: 1) Statement 1: We cannot determine if `m` is even or odd based on the given equation alone. 2) Statement 2: We cannot determine if `k` is even or odd based on the given equation alone. 3) Statement 3: `k - m` is even. 4) Statement 4: If `m` is even, then `k` is even.Therefore, statements 3 and 4 are the only ones that are true.
Note: It is important to note that the analysis provided is based on the given equation and mathematical reasoning. If there are any additional constraints or information provided, it may alter the conclusions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili