Вопрос задан 25.02.2019 в 23:44. Предмет Математика. Спрашивает Коновалов Вова.

Точка N лежит на прямой MK между точками M и K. Найдите расстояние между серединами отрезков MN и

NK, если MN = 32 см, NK = 5 см Срочно(с рисунком пожалуйста)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Дима.
М1-середина МN, К1-середина 
MN = 32 см⇒ половина этого отрезка М1N=16см
NK = 5 см⇒половина этого отрезка К1N=2,5 см
16+2,5=18,5 см расстояние между серединами отрезков 
MN и NK

М----------------М1----------------
N--К1--K
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that point N lies on the line MK between points M and K. We need to find the distance between the midpoints of segments MN and NK, given that MN = 32 cm and NK = 5 cm.

Solution

To find the distance between the midpoints of segments MN and NK, we first need to find the coordinates of points M, N, and K. Then we can calculate the midpoints and find the distance between them.

Let's assume that point M has coordinates (x1, y1), point N has coordinates (x2, y2), and point K has coordinates (x3, y3). Since point N lies on the line MK, we can express its coordinates using the coordinates of points M and K as follows:

x2 = (x1 + x3) / 2 y2 = (y1 + y3) / 2

We are also given that MN = 32 cm and NK = 5 cm. Using the distance formula, we can calculate the lengths of segments MN and NK:

MN = sqrt((x2 - x1)^2 + (y2 - y1)^2) = 32 cm NK = sqrt((x3 - x2)^2 + (y3 - y2)^2) = 5 cm

Simplifying these equations, we get:

(x2 - x1)^2 + (y2 - y1)^2 = 32^2 (x3 - x2)^2 + (y3 - y2)^2 = 5^2

We have two equations with two unknowns (x2, y2) and (x3, y3). Solving these equations will give us the coordinates of points N and K.

Once we have the coordinates of points N and K, we can find the midpoints of segments MN and NK. The midpoint of segment MN will be the average of the coordinates of points M and N, and the midpoint of segment NK will be the average of the coordinates of points N and K.

Finally, we can calculate the distance between the midpoints of segments MN and NK using the distance formula.

Solution Steps

1. Let's assume the coordinates of point M are (x1, y1). 2. Using the equation x2 = (x1 + x3) / 2, we can express the x-coordinate of point N in terms of x1 and x3. 3. Using the equation y2 = (y1 + y3) / 2, we can express the y-coordinate of point N in terms of y1 and y3. 4. Substitute the expressions for x2 and y2 into the equation (x2 - x1)^2 + (y2 - y1)^2 = 32^2 to solve for x3 and y3. 5. Once we have the coordinates of points N and K, we can find the midpoints of segments MN and NK. 6. Calculate the distance between the midpoints of segments MN and NK using the distance formula.

Calculation

Let's assume the coordinates of point M are (x1, y1). Using the given information, we can calculate the coordinates of points N and K.

Let's solve the equations to find the coordinates of point N:

(x2 - x1)^2 + (y2 - y1)^2 = 32^2 (x3 - x2)^2 + (y3 - y2)^2 = 5^2

Substituting the expressions for x2 and y2 from step 2 and step 3 into the equations, we get:

((x1 + x3) / 2 - x1)^2 + ((y1 + y3) / 2 - y1)^2 = 32^2 (x3 - (x1 + x3) / 2)^2 + (y3 - (y1 + y3) / 2)^2 = 5^2

Simplifying the equations, we get:

(x3 - x1)^2 / 4 + (y3 - y1)^2 / 4 = 32^2 (x3 - x1)^2 / 4 + (y3 - y1)^2 / 4 = 5^2

Since the left sides of the equations are equal, we can equate the right sides:

32^2 = 5^2

Simplifying, we get:

1024 = 25

This is not a valid equation, which means there is no solution for the coordinates of points N and K that satisfy the given conditions. Therefore, we cannot calculate the distance between the midpoints of segments MN and NK.

Please note that the given information may be incorrect or incomplete. If you have any additional information or if there is any other way I can assist you, please let me know.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос