
Из пункта А в пункт В, расстояние между которыми 50 км, одновременно выехали автомобилист и
велосипедист. Известно, что в час автомобилист проезжает на 60 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 2 часа 40 минут позже автомобилиста. Ответ дайте в км/ч

Ответы на вопрос

Vвелосипедиста -х
Vавтомоболиста-х+80
2ч 40мин- 8/3 часа
нам формула известна t = S / V
30 /x - 30 / (x+80) = 8/3
30х + 2400 -30х = 8/3 *х(х+80)
x2 +80x - 900=0
x1=10
x2= -90.
и всё нам теперь время известно 10ч



60/х -60/(х+50)=5
(60*(х+50)-60*х-5х*(х+50))/(х*(х+50))=0 х не может быть равен0, -50
60x+3000-60x-5x^-250x=0
-5x^-250x+3000=0
x^+50x-600=0
D=2500-4*(-600)=70^
x1=(-50-70)/2=-60 не отвечает условию задачи
х2=(-50+70)/2=10
Ответ 10 км/ч



Problem Analysis
We are given that a car and a cyclist simultaneously left point A and traveled towards point B, which are 50 km apart. The car travels 60 km/h faster than the cyclist. We need to determine the speed of the cyclist if we know that the cyclist arrived at point B 2 hours and 40 minutes later than the car.Solution
Let's assume the speed of the cyclist is x km/h. Since the car travels 60 km/h faster than the cyclist, the speed of the car is x + 60 km/h.We can use the formula distance = speed × time to calculate the time taken by each of them to travel from point A to point B.
The time taken by the cyclist is given by: time taken by cyclist = distance / speed of cyclist
The time taken by the car is given by: time taken by car = distance / speed of car
We know that the time taken by the cyclist is 2 hours and 40 minutes (or 2.67 hours) more than the time taken by the car. So we can write the equation:
time taken by cyclist = time taken by car + 2.67
Substituting the formulas for time taken by each of them, we get:
distance / speed of cyclist = distance / speed of car + 2.67
Since the distance is the same for both, we can cancel it out:
1 / speed of cyclist = 1 / speed of car + 2.67
Now we can substitute the values of the speed of the cyclist and the car:
1 / x = 1 / (x + 60) + 2.67
To solve this equation, we can multiply both sides by x(x + 60) to eliminate the fractions:
x(x + 60) / x = x(x + 60) / (x + 60) + 2.67(x + 60)
Simplifying the equation:
x + 60 = x(x + 60) + 2.67(x + 60)
Expanding and simplifying further:
x + 60 = x^2 + 60x + 2.67x + 160.2
Rearranging the equation:
x^2 + 23.67x - 100.2 = 0
Now we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)
where a = 1, b = 23.67, and c = -100.2.
Solving the equation, we get two possible solutions for x. We will consider the positive value since speed cannot be negative:
x = 3.3 (rounded to one decimal place)
Therefore, the speed of the cyclist is 3.3 km/h.
Answer
The speed of the cyclist is 3.3 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili