
4.В одной пачке тетрадей в два раза больше, чем в другой. Когда из первой забрали 12 тетрадей, а в
другую пачку добавили 6 тетрадей, то их количество в пачках стало одинаковым. Какое количество тетрадей было в большей пачке? 5.Даны два числа, одно из которых на 11 меньше другого, а их сумма равна 36. Найдите эти числа. Пусть х - большее число, тогда: Выберите один ответ: a. х+ (х - 11)=36 b. х∙(х +11)=36 c. х∙ (х -11)=36 d. х+ (х +11)=36 6. Велосипедисты выехали из одного пункта в противоположных направлениях. Скорость первого равна х км/ч, что на 2 км/ч больше скорости второго. Расстояние между велосипедистами через 3 ч оказалось равным 66 км. Выберите подходящие математические модели ситуации. Выберите один или несколько ответов: a. х + х - 2 ⋅ 3 = 66 b. 3х +3(х - 2) = 66 c. (х + х - 2) ⋅ 3 = 66 d. х+ (х - 2) ⋅ 3 = 66

Ответы на вопрос

Пишем уравнение.
2*х - 12 = х + 6 - стало поровну.
Упрощаем - разделяем неизвестное от известного, и не забываем менять при этом знаки.
2*x - x = 6 + 12
приводим члены
x = 18 - во второй пачке - ОТВЕТ
2*х = 36 - в первой пачке - ОТВЕТ
5.
Второе меньше = х-11, а 36 - это сумма.
х + (х-11) = 36
ОТВЕТ а)
Дополнительно. Решаем уравнение и получаем.
2*х = 36 + 11 = 47
х = 47 : 2 = 23,5 - первое число.
у = 36 - 23,5 = 12,5 - второе число.
6.
Выехали в противоположные стороны - скорость удаления равна сумме скоростей.
ОТВЕТЫ
b) Сумма путей при движении в противоположные стороны за три часа
с) Находим путь через совместную скорость. Сначала вычислили скорость удаления.



5. а
6. с
4. на фото
вроде так



Давайте решим по порядку:
Задача 4:
Пусть \(x\) - количество тетрадей в меньшей пачке. Тогда в большей пачке их количество равно \(2x\).Условие гласит, что после того как из первой пачки забрали 12 тетрадей, а во вторую пачку добавили 6 тетрадей, количество тетрадей в обеих пачках стало равным. Это можно записать уравнением:
\[ 2x - 12 = x + 6 \]
Решив это уравнение, найдем значение \(x\), которое будет представлять количество тетрадей в меньшей пачке. После этого можно найти количество тетрадей в большей пачке (\(2x\)).
Задача 5:
Даны два числа, одно из которых на 11 меньше другого, и их сумма равна 36. Пусть \(x\) - большее число. Тогда у нас есть следующее уравнение:\[ x + (x - 11) = 36 \]
Решив это уравнение, найдем значение \(x\), а затем можно найти второе число, вычтя 11 из \(x\).
Задача 6:
Велосипедисты выехали из одного пункта в противоположных направлениях. Скорость первого велосипедиста равна \(x\) км/ч, что на 2 км/ч больше скорости второго. Расстояние между велосипедистами через 3 часа оказалось равным 66 км.Мы можем использовать формулу расстояния, которая выражается как произведение скорости на время:
\[ \text{Расстояние} = \text{Скорость} \times \text{Время} \]
Для первого велосипедиста расстояние будет \(3x\), а для второго - \(3(x - 2)\). Условие задачи утверждает, что сумма этих расстояний равна 66 км. Таким образом, у нас есть уравнение:
\[ 3x + 3(x - 2) = 66 \]
Решив это уравнение, мы найдем значение \(x\), которое представляет собой скорость первого велосипедиста. Мы также можем найти скорость второго велосипедиста, вычтя 2 из \(x\).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili