
Развёрткой боковой поверхности конуса является сектор BAС, длина радиуса которого равна 8 см, а
градусная мера дуги равна 60 градусов. Точка Т - середина отрезка АВ(рис.55,б). Вычислите площадь сечения конуса плоскостью, проходящей через точку Т и параллельной плоскости основания конуса.

Ответы на вопрос

Сектор круга "сворачивается" в прямой конус. Сечение прямого конуса, параллельное основанию - круг.
Площадь круга равна πr².
Так как Т середина АВ, то АТ - радиус меньшего сектора с той же градусной мерой, но другой длиной дуги.
Радиус r сечения найдем из длины дуги меньшего сектора, которая равна 1/6 длины окружности, т.к. длина дуги 60º- шестая часть любой окружности (360º:60º=6).
R1= АТ=АВ:2=4
С=2πR1:6=π•8:6=4π:3
Длина окружности сечения равна π•4/3, ⇒
2π r=π•4/3 ⇒
r=(π•4/3):2π=2/3
S(сеч)=πr²=π•(2/3)²=π•4/9 см²≈ 1,396 см²
---------------
Задачу можно решить, применив отношение площадей подобных фигур. В таком случае узнается радиус основания круга, затем его площадь.
Так как Т - середина образующей конуса, то k=1/2
Отношение площадей подобных фигур равно k², и площадь сечения будет в 4 раза меньше площади основания конуса.



Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili