
А)прямая y=3x+l проходит чепез точку А(17;30) найдите l и определите, проходит ли эта прямая через
точку В(25;54) б)прямая у= -2,5х+ l походит через точку М(-20;66) найдите l и определите, проходит ли эта прямая через точку С(20;36) помогите пожайлуста

Ответы на вопрос

30=3×17+l
l=-21
уравнение прямой y=3x-21
3×25-21=75-21=54
точка В (25;54) лежит на прямой
2) найдем коэффициент
66=-2,5×(-20)+l
l=16
уравнение прямой y=-2,5x+16
-2,5×20+16=-34 <>36
точка С (20;36) не лежит на прямой



Task A: Finding the equation of a line passing through point A(17, 30) and determining if it passes through point B(25, 54)
To find the equation of a line passing through point A(17, 30), we need to determine the slope (l) of the line. The slope (l) can be found using the formula:
l = (y2 - y1) / (x2 - x1)
where (x1, y1) = (17, 30) and (x2, y2) = (25, 54).
Substituting the values into the formula, we get:
l = (54 - 30) / (25 - 17) = 24 / 8 = 3
So, the slope (l) of the line passing through point A(17, 30) is 3.
Now, we can use the slope-intercept form of a linear equation, which is:
y = mx + b
where m is the slope and b is the y-intercept.
Substituting the values of the slope (m = 3) and the coordinates of point A (x = 17, y = 30) into the equation, we can solve for b:
30 = 3 * 17 + b
Simplifying the equation, we get:
30 = 51 + b
Subtracting 51 from both sides, we find:
b = -21
Therefore, the equation of the line passing through point A(17, 30) is:
y = 3x - 21.
To determine if this line passes through point B(25, 54), we can substitute the coordinates of point B into the equation and check if the equation holds true:
54 = 3 * 25 - 21
Simplifying the equation, we get:
54 = 75 - 21
54 = 54
Since the equation holds true, we can conclude that the line y = 3x - 21 passes through point B(25, 54).
Task B: Finding the equation of a line passing through point M(-20, 66) and determining if it passes through point C(20, 36)
To find the equation of a line passing through point M(-20, 66), we need to determine the slope (l) of the line. Using the same formula as before:
l = (y2 - y1) / (x2 - x1)
where (x1, y1) = (-20, 66) and (x2, y2) = (20, 36).
Substituting the values into the formula, we get:
l = (36 - 66) / (20 - (-20)) = -30 / 40 = -0.75
So, the slope (l) of the line passing through point M(-20, 66) is -0.75.
Using the slope-intercept form of a linear equation, we can write the equation as:
y = mx + b
Substituting the values of the slope (m = -0.75) and the coordinates of point M (x = -20, y = 66) into the equation, we can solve for b:
66 = -0.75 * (-20) + b
Simplifying the equation, we get:
66 = 15 + b
Subtracting 15 from both sides, we find:
b = 51
Therefore, the equation of the line passing through point M(-20, 66) is:
y = -0.75x + 51.
To determine if this line passes through point C(20, 36), we can substitute the coordinates of point C into the equation and check if the equation holds true:
36 = -0.75 * 20 + 51
Simplifying the equation, we get:
36 = -15 + 51
36 = 36
Since the equation holds true, we can conclude that the line y = -0.75x + 51 passes through point C(20, 36).
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili