
Доказать, что 1^3+2^3+3^3+4^3+...+2016^3 делится на 2017


Ответы на вопрос

Рассмотрим произвольную пару: k^3+(2017-k)^3=(k+2017-k)*(k^2+k(2017-k)+(2017-k)^2)=2017*((k^2+k(2017-k)+(2017-k)^2)), то есть, она кратна 2017, значит и сумма всех 1013 этих пар кратна 2017.



Для доказательства того, что сумма кубов чисел от 1 до 2016 делится на 2017, мы можем воспользоваться методом математической индукции.
Базовый шаг:
Проверим, что утверждение верно для начального значения n = 1. 1^3 = 1, и 1 делится на 2017 без остатка.Предположение индукции:
Предположим, что утверждение верно для некоторого значения n = k, то есть сумма кубов чисел от 1 до k делится на 2017.Шаг индукции:
Докажем, что утверждение верно для n = k + 1, используя предположение индукции. Рассмотрим сумму кубов чисел от 1 до k + 1: 1^3 + 2^3 + 3^3 + ... + k^3 + (k + 1)^3Мы можем представить эту сумму как сумму двух частей: 1^3 + 2^3 + 3^3 + ... + k^3 + (k + 1)^3 = (1^3 + 2^3 + 3^3 + ... + k^3) + (k + 1)^3
По предположению индукции, сумма кубов чисел от 1 до k делится на 2017. Поэтому первая часть суммы делится на 2017 без остатка.
Теперь рассмотрим вторую часть суммы: (k + 1)^3. Мы можем записать (k + 1)^3 как (k^3 + 3k^2 + 3k + 1). Таким образом, вторая часть суммы также представляет собой сумму кубов чисел, но с коэффициентами 3k^2, 3k и 1.
Мы знаем, что сумма кубов чисел от 1 до k делится на 2017 без остатка. Поэтому первая часть суммы делится на 2017 без остатка. Также заметим, что 3k^2, 3k и 1 являются константами, не зависящими от k.
Таким образом, вторая часть суммы также делится на 2017 без остатка.
Итак, мы доказали, что если сумма кубов чисел от 1 до k делится на 2017, то сумма кубов чисел от 1 до k + 1 также делится на 2017.
Заключение:
Мы доказали, что сумма кубов чисел от 1 до 2016 делится на 2017.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili