
Срочная помощь по тригонометрии!!!!


Ответы на вопрос

x^2=3pi/(pi/6+2pi*n), n∈Z
x^2=18pi/(pi+12pi*n), n∈Z
x^2=18/(1+12n), n∈Z
x1=3*sqrt(2)/sqrt((1+12n)), n∈Z
x2= -3*sqrt(2)/sqrt((1+12n)), n∈Z
3pi/x^2= 2pi*n-pi/6
x^2= 3pi/(2pi*n-pi/6), n∈Z
x^2=18pi/(12pi*n-pi), n∈Z
x3=3sqrt(2)/sqrt(12n-1), n∈Z
x4= -3sqrt(2)/sqrt(12n-1), n∈Z



Trigonometry Basics
Trigonometry is a branch of mathematics that deals with the relationships between the angles and sides of triangles. It is widely used in various fields, including physics, engineering, and navigation. Here are some key concepts in trigonometry:
Right Triangle: A right triangle is a triangle that has one angle measuring 90 degrees. The side opposite the right angle is called the hypotenuse, and the other two sides are called the legs.
Trigonometric Functions: Trigonometric functions are mathematical functions that relate the angles of a right triangle to the ratios of its sides. The main trigonometric functions are:
- Sine (sin): The sine of an angle is the ratio of the length of the side opposite the angle to the length of the hypotenuse. - Cosine (cos): The cosine of an angle is the ratio of the length of the side adjacent to the angle to the length of the hypotenuse. - Tangent (tan): The tangent of an angle is the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle.
Trigonometric Identities: Trigonometric identities are equations that are true for all values of the variables involved. They are used to simplify trigonometric expressions and solve trigonometric equations. Some common trigonometric identities include:
- Pythagorean Identity: sin^2(x) + cos^2(x) = 1 - Reciprocal Identities: csc(x) = 1/sin(x), sec(x) = 1/cos(x), cot(x) = 1/tan(x) - Quotient Identities: tan(x) = sin(x)/cos(x), cot(x) = cos(x)/sin(x) - Even-Odd Identities: sin(-x) = -sin(x), cos(-x) = cos(x), tan(-x) = -tan(x)
Unit Circle: The unit circle is a circle with a radius of 1 unit, centered at the origin of a coordinate plane. It is used to define the values of trigonometric functions for any angle.
Inverse Trigonometric Functions: Inverse trigonometric functions are used to find the angle given the ratio of sides. They are denoted by adding an "arc" prefix to the trigonometric function, such as arcsin, arccos, and arctan.
Trigonometric Formulas and Equations
Trigonometry involves various formulas and equations that help solve problems related to angles and sides of triangles. Here are some commonly used formulas:
- Law of Sines: The law of sines states that the ratio of the length of a side of a triangle to the sine of its opposite


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili