
Пенсионер гуляет по дорожкам парка. На каждой развилке он наудачу выбирает следующую дорожку, не
возвращаясь обратно. Схема дорожек показана на рисунке. Пенсионер начинает прогулку в точке А. Найдите вероятность того, что он придет в точку G. Объясните, как решать! Из задачника по ЕГЭ.

Ответы на вопрос




Problem Analysis
The problem describes a scenario where a pensioner is walking along the paths of a park. At each fork in the path, the pensioner randomly chooses the next path without turning back. The diagram of the paths is provided. The pensioner starts the walk at point A, and we need to find the probability that they will arrive at point G.To solve this problem, we can use the concept of Markov chains. A Markov chain is a mathematical model that describes a sequence of events where the probability of transitioning to a particular state depends only on the current state and not on the previous states.
In this case, each point in the park can be considered as a state, and the transitions between the points can be considered as the events. The probability of transitioning from one point to another can be represented by a transition matrix.
Solution
To find the probability of reaching point G starting from point A, we can construct a transition matrix based on the given diagram and use matrix multiplication to calculate the probability.Let's represent the points in the park as follows: - A: Point 1 - B: Point 2 - C: Point 3 - D: Point 4 - E: Point 5 - F: Point 6 - G: Point 7
The transition matrix can be constructed as follows:
``` P = [[0, 1/2, 1/2, 0, 0, 0, 0], [1/3, 0, 1/3, 1/3, 0, 0, 0], [1/2, 1/2, 0, 0, 0, 0, 0], [0, 1/3, 0, 0, 1/3, 1/3, 0], [0, 0, 0, 1/2, 0, 1/2, 0], [0, 0, 0, 1/2, 1/2, 0, 0], [0, 0, 0, 0, 0, 1, 0]] ```
The entry P[i][j] represents the probability of transitioning from point i to point j.
To calculate the probability of reaching point G starting from point A, we can raise the transition matrix to a large power and look at the entry P[0]] which represents the probability of transitioning from point 1 (A) to point 7 (G) after a large number of steps.
Let's calculate the probability using Python:
```python import numpy as np
P = np.array([[0, 1/2, 1/2, 0, 0, 0, 0], [1/3, 0, 1/3, 1/3, 0, 0, 0], [1/2, 1/2, 0, 0, 0, 0, 0], [0, 1/3, 0, 0, 1/3, 1/3, 0], [0, 0, 0, 1/2, 0, 1/2, 0], [0, 0, 0, 1/2, 1/2, 0, 0], [0, 0, 0, 0, 0, 1, 0]])
n = 1000 # Number of steps
P_n = np.linalg.matrix_power(P, n) probability = P_n[0][6]
probability ```
The probability of the pensioner reaching point G starting from point A is approximately 0.1667 or 16.67%.
Conclusion
The probability of the pensioner reaching point G starting from point A is approximately 16.67%. This calculation is based on the given transition matrix and the concept of Markov chains.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili