
Катя купила кисточку, альбом и краски, заплатила за покупку 100 руб.. Краски стоят на 50 руб.
дороже кисточки, а краски и кисточка вместе - на 80 руб. дороже, чем альбом. Сколько стоит каждый предмет в отдельности?

Ответы на вопрос

80-50=30 руб стоит кисточка
Ответ кисточка-30руб
краски-50руб
альбом-20руб



Problem Analysis
Катя купила кисточку, альбом и краски. Она заплатила за покупку 100 рублей. Краски стоят на 50 рублей дороже кисточки, а краски и кисточка вместе стоят на 80 рублей дороже, чем альбом. Нам нужно определить стоимость каждого предмета в отдельности.
Solution
Let's assume the cost of the brush is x rubles, the cost of the paints is y rubles, and the cost of the album is z rubles.
From the given information, we can form the following equations:
1. The cost of the paints is 50 rubles more than the cost of the brush: y = x + 50.
2. The cost of the paints and the brush together is 80 rubles more than the cost of the album: x + y = z + 80.
3. The total cost of the purchase is 100 rubles: x + y + z = 100.
We can solve these equations to find the values of x, y, and z.
Solving the Equations
Let's solve the equations using substitution or elimination method.
From equation 1, we have y = x + 50.
Substituting this value of y in equation 2, we get: x + (x + 50) = z + 80.
Simplifying the equation, we have: 2x + 50 = z + 80.
Rearranging the equation, we get: 2x - z = 30. ---(Equation 4)
Substituting the values of x and y in equation 3, we get: x + (x + 50) + z = 100.
Simplifying the equation, we have: 2x + z = 50. ---(Equation 5)
Now, we have two equations (Equation 4 and Equation 5) with two variables (x and z). We can solve these equations to find the values of x and z.
Solving Equations 4 and 5
To solve these equations, we can use the method of substitution or elimination.
Let's solve using the elimination method:
Multiplying Equation 4 by 2, we get: 4x - 2z = 60. ---(Equation 6)
Subtracting Equation 5 from Equation 6, we get: (4x - 2z) - (2x + z) = 60 - 50.
Simplifying the equation, we have: 2x - 3z = 10. ---(Equation 7)
Now, we have two equations (Equation 5 and Equation 7) with two variables (x and z). We can solve these equations to find the values of x and z.
Solving Equations 5 and 7
To solve these equations, we can use the method of substitution or elimination.
Let's solve using the substitution method:
From Equation 7, we have 2x - 3z = 10.
Solving Equation 7 for x, we get: x = (10 + 3z) / 2. ---(Equation 8)
Substituting the value of x from Equation 8 into Equation 5, we get: (10 + 3z) / 2 + z = 50.
Simplifying the equation, we have: 10 + 3z + 2z = 100.
Combining like terms, we have: 5z = 90.
Solving for z, we get: z = 18.
Substituting the value of z into Equation 8, we get: x = (10 + 3 * 18) / 2.
Simplifying the equation, we have: x = 28.
Now, we have the values of x and z. We can substitute these values into any of the original equations to find the value of y.
Substituting the values of x and z into Equation 5, we get: 2 * 28 + 18 = 50.
Simplifying the equation, we have: 56 + 18 = 50.
This equation is not true, which means there is no solution that satisfies all the given conditions. There might be an error in the given information or the problem statement.
Therefore, we cannot determine the individual prices of the brush, paints, and album based on the given information.
Please double-check the information provided or provide additional details to proceed with the calculation.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili