
1) x2 + 70 > 0 2) x2 − 70 > 0 3) x2 + 70 < 0 4) x2 − 70 < 0 Укажите неравенство,
решением которого является любое число. и решение пж)

Ответы на вопрос

x^2>-70 Это неравенство верно при любом числе х, т.к. число в квадрате больше 0
2) x^2 − 70 > 0
х^2>70 Верно, но не при любом значении х
3) x^2 + 70 < 0
x^2<-70, Это неравенство неверно, т.к. число в квадрате больше 0
4) x^2 − 70 < 0
х^2<70, Это неравенство верно, но не при любом значении х
Ответ: 1



1) x^2 + 70 > 0 2) x^2 - 70 > 0 3) x^2 + 70 < 0 4) x^2 - 70 < 0
Let's solve each inequality one by one:
1) x^2 + 70 > 0: To solve this inequality, we need to find the values of x for which the expression x^2 + 70 is greater than zero. We can start by subtracting 70 from both sides: x^2 > -70
Since the square of any real number is always non-negative, there are no real solutions to this inequality. This means that x^2 + 70 will always be greater than zero for any value of x.
2) x^2 - 70 > 0: To solve this inequality, we need to find the values of x for which the expression x^2 - 70 is greater than zero. We can start by adding 70 to both sides: x^2 > 70
To find the values of x, we can take the square root of both sides, remembering to consider both the positive and negative square roots: x > sqrt(70) or x < -sqrt(70)
So, the solution to this inequality is x > sqrt(70) or x < -sqrt(70). This means that any number greater than the square root of 70 or any number less than the negative square root of 70 will satisfy the inequality.
3) x^2 + 70 < 0: To solve this inequality, we need to find the values of x for which the expression x^2 + 70 is less than zero. We can start by subtracting 70 from both sides: x^2 < -70
Again, since the square of any real number is always non-negative, there are no real solutions to this inequality. This means that x^2 + 70 will always be greater than zero for any value of x.
4) x^2 - 70 < 0: To solve this inequality, we need to find the values of x for which the expression x^2 - 70 is less than zero. We can start by adding 70 to both sides: x^2 < 70
To find the values of x, we can take the square root of both sides, remembering to consider both the positive and negative square roots: x < sqrt(70) or x > -sqrt(70)
So, the solution to this inequality is x < sqrt(70) or x > -sqrt(70). This means that any number less than the square root of 70 or any number greater than the negative square root of 70 will satisfy the inequality.
In summary: 1) There is no solution to x^2 + 70 > 0. 2) The solution to x^2 - 70 > 0 is x > sqrt(70) or x < -sqrt(70). 3) There is no solution to x^2 + 70 < 0. 4) The solution to x^2 - 70 < 0 is x < sqrt(70) or x > -sqrt(70).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili