Вопрос задан 17.02.2019 в 10:08. Предмет Математика. Спрашивает Малахова Вероника.

Через полторы минуты после начала движения велосипедист проколол шину. Сколько времени он шёл с

велосипедом домой, если на обратном пути его скорость была в шесть раз меньше?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Деревянкин Ваня.
1.5x6=9 минут
А велосипедиста жалко

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculating the Time to Get Home After a Bike Tire Puncture

To calculate the time it took for the cyclist to get home after the tire puncture, we can use the concept of average speed. Let's denote the time it took for the cyclist to get home before the puncture as t and the time it took after the puncture as t'. The speed before the puncture is v, and the speed after the puncture is v'.

We know that the distance traveled before the puncture is the same as the distance traveled after the puncture. Therefore, we can use the formula:

Distance = Speed × Time

Before the puncture: Distance = v × t After the puncture: Distance = v' × t'

Given that the speed after the puncture is six times less than the speed before the puncture, we can express v' in terms of v as v' = v / 6.

Calculating the Time

To calculate the time it took for the cyclist to get home after the tire puncture, we can use the relationship between the speeds before and after the puncture.

Let's denote the time it took for the cyclist to get home before the puncture as t and the time it took after the puncture as t'. The speed before the puncture is v, and the speed after the puncture is v'.

We know that the distance traveled before the puncture is the same as the distance traveled after the puncture. Therefore, we can use the formula:

Distance = Speed × Time

Before the puncture: Distance = v × t After the puncture: Distance = v' × t'

Given that the speed after the puncture is six times less than the speed before the puncture, we can express v' in terms of v as v' = v / 6.

Using this relationship, we can calculate the time it took for the cyclist to get home after the puncture.

Solution

Let's denote the total distance traveled as d. Since the distance is the same before and after the puncture, we have:

v × t = v' × t' v × t = (v / 6) × t'

We can solve for t' in terms of t:

t' = 6t

This means that the time it took for the cyclist to get home after the puncture is six times the time it took before the puncture.

So, if the cyclist walked for t minutes before the puncture, they would have walked for 6t minutes after the puncture.

Therefore, if the cyclist walked for 10 minutes before the puncture, they would have walked for 60 minutes after the puncture.

This means that the total time to get home after the puncture is 10 + 60 = 70 minutes.

So, the cyclist walked for 70 minutes to get home after the tire puncture.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос