Вопрос задан 17.02.2019 в 02:12. Предмет Математика. Спрашивает Требс Рома.

Начертите отрезок AB,длина которогоравна 4 см.постройте окружность радиуса 3 см с центромA и

окружность радиуса2 см с центромB сколько существует точекпересечения окружностей до точкиA,до точкиB?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Искаков Артур.
Всего 4 точки пересечения 
они находятся на точках пересечения :сверху снизу и по бокам

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Drawing the Line Segment AB and Circles

To draw the line segment AB with a length of 4 cm, we can use a ruler or any other straight edge. Start by marking point A on a piece of paper. Then, measure 4 cm from point A and mark point B. Finally, draw a straight line connecting points A and B. This line segment AB will have a length of 4 cm.

To draw the circles, we will use the centers A and B as described. The circle with center A and a radius of 3 cm can be drawn by placing the point of a compass at point A and extending the compass to a distance of 3 cm. Then, rotate the compass around point A to draw the circle.

Similarly, the circle with center B and a radius of 2 cm can be drawn by placing the point of a compass at point B and extending the compass to a distance of 2 cm. Rotate the compass around point B to draw the circle.

Intersections of the Circles

To determine the number of intersection points between the circles, we need to consider their relative positions and radii. There are three possible scenarios:

1. The circles do not intersect: If the distance between the centers A and B is greater than the sum of their radii (3 cm + 2 cm = 5 cm), the circles will not intersect. In this case, there are no intersection points between the circles.

2. The circles intersect at two points: If the distance between the centers A and B is less than the sum of their radii but greater than the difference between their radii (|3 cm - 2 cm| = 1 cm), the circles will intersect at two points. In this case, there are two intersection points between the circles.

3. One circle is completely inside the other: If the distance between the centers A and B is less than the difference between their radii (|3 cm - 2 cm| = 1 cm), one circle will be completely inside the other. In this case, there are no intersection points between the circles.

To determine the exact number of intersection points, we would need the specific measurements of the distance between the centers A and B. Without this information, we can only provide the general scenarios described above.

Please note that the number of intersection points may vary depending on the specific measurements of the line segment AB and the radii of the circles.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос