
Построить график функции y=(x+2)^2/(x^2+4)


Ответы на вопрос







Graph of the Function y=(x+2)^2/(x^2+4)
To graph the function y=(x+2)^2/(x^2+4), we can start by analyzing the behavior of the function at different points.
Let's begin by finding the x-intercepts, y-intercepts, and any vertical asymptotes.
To find the x-intercepts, we set y=0 and solve for x:
(x+2)^2/(x^2+4) = 0
Since the numerator is a perfect square, it can never be equal to zero. Therefore, there are no x-intercepts.
To find the y-intercept, we set x=0:
y = (0+2)^2/(0^2+4) = 4/4 = 1
So the y-intercept is (0, 1).
Now let's analyze the vertical asymptotes. Vertical asymptotes occur when the denominator of the function is equal to zero. In this case, the denominator is x^2+4. However, since the denominator is always positive, there are no vertical asymptotes.
Next, let's find the horizontal asymptotes. To do this, we can analyze the behavior of the function as x approaches positive and negative infinity.
As x approaches positive infinity, both the numerator and denominator of the function approach infinity. Therefore, the function approaches y=1 as x approaches positive infinity.
As x approaches negative infinity, both the numerator and denominator of the function approach infinity. Therefore, the function also approaches y=1 as x approaches negative infinity.
So the horizontal asymptote of the function is y=1.
Now, let's plot some additional points to get a better understanding of the graph.
When x=-2, the function becomes undefined since it results in division by zero. However, we can see that as x approaches -2 from the left or right, the function approaches positive infinity. Therefore, we can say that there is a vertical asymptote at x=-2.
When x=-1, the function evaluates to y=1/2.
When x=-3, the function evaluates to y=9/5.
Based on these points and the information we gathered earlier, we can sketch the graph of the function y=(x+2)^2/(x^2+4).

Please note that the graph is an approximation and may not be perfectly accurate. It is always recommended to use graphing software or a graphing calculator for precise graphs.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili