Вопрос задан 16.02.2019 в 22:13. Предмет Математика. Спрашивает Мануйлова Катя.

Помогите решить задачу. лисица гонится за касулей. скорость лисицы 11 метров в секунду а скорость

касули 9 метров в секунду. сейчас между ними 300 метров. на каком растоянии от косули будет лисица через 40 секунд. через сколько времени она догонит косулю.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гончаров Макс.
1)11-9=2(м/с)
2)40*2=80(м)
3)300-80=220(м)
4)300:2=150(сек)
Ответ: Через 150 сек лисица догонит косулю.
Надеюсь правильно )
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

To solve this problem, we need to determine the distance between the fox and the hare after 40 seconds and the time it takes for the fox to catch up to the hare. We are given the speeds of the fox and the hare, as well as the initial distance between them.

Distance Calculation

To calculate the distance between the fox and the hare after 40 seconds, we can use the formula:

Distance = Speed × Time

For the fox, the speed is 11 m/s and the time is 40 seconds. Therefore, the distance covered by the fox in 40 seconds is:

Distance_fox = 11 m/s × 40 s

For the hare, the speed is 9 m/s and the time is 40 seconds. Therefore, the distance covered by the hare in 40 seconds is:

Distance_hare = 9 m/s × 40 s

To find the distance between the fox and the hare after 40 seconds, we subtract the distance covered by the hare from the initial distance between them:

Distance_between = Initial_distance - Distance_hare

Time Calculation

To calculate the time it takes for the fox to catch up to the hare, we can use the formula:

Time = Distance / Relative_speed

The relative speed is the difference between the speeds of the fox and the hare. Therefore, the time it takes for the fox to catch up to the hare is:

Time_to_catch = Distance_between / (Speed_fox - Speed_hare)

Solution

Let's calculate the distance between the fox and the hare after 40 seconds and the time it takes for the fox to catch up to the hare.

Given: - Speed of the fox = 11 m/s - Speed of the hare = 9 m/s - Initial distance between them = 300 m - Time = 40 seconds

Using the formulas mentioned above, we can calculate:

Distance_fox = 11 m/s × 40 s = 440 m

Distance_hare = 9 m/s × 40 s = 360 m

Distance_between = Initial_distance - Distance_hare = 300 m - 360 m = -60 m

The negative value for the distance between the fox and the hare indicates that the fox has already caught up to the hare.

Time_to_catch = Distance_between / (Speed_fox - Speed_hare) = -60 m / (11 m/s - 9 m/s) = -60 m / 2 m/s = -30 s

The negative value for the time to catch indicates that the fox caught up to the hare 30 seconds ago.

Therefore, after 40 seconds, the fox will be 60 meters behind the hare and it caught up to the hare 30 seconds ago.

Please let me know if you need any further assistance!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос