
7 (x-5y)+6x=3 (x+4y)+27


Ответы на вопрос

7x-3x-35y-12y=27
4x-47y=27
-43y=27
y=27:43
y=27\1:43\1
y=27\45



I can help you with your math problem. Here is the detailed solution:
To solve for x and y, we need to simplify the equation and then use substitution or elimination method.
First, we distribute the 7 and the 3 to the terms inside the parentheses:
$$7x - 35y + 6x = 3x + 12y + 27$$
Then, we combine the like terms on both sides of the equation:
$$13x - 35y = 3x + 12y + 27$$
Next, we subtract 3x from both sides and add 35y to both sides:
$$10x = 47y + 27$$
Now, we divide both sides by 10 to isolate x:
$$x = \frac{47y + 27}{10}$$
We can use this value of x to find y by substituting it into the original equation. For simplicity, we will use the equation after distributing the 7 and the 3:
$$7x - 35y + 6x = 3x + 12y + 27$$
Substituting x with $\frac{47y + 27}{10}$, we get:
$$7(\frac{47y + 27}{10}) - 35y + 6(\frac{47y + 27}{10}) = 3(\frac{47y + 27}{10}) + 12y + 27$$
Simplifying the fractions, we get:
$$\frac{329y + 189}{10} - 35y + \frac{282y + 162}{10} = \frac{141y + 81}{10} + 12y + 27$$
Multiplying both sides by 10 to clear the denominators, we get:
$$329y + 189 - 350y + 282y + 162 = 141y + 81 + 120y + 270$$
Combining the like terms on both sides, we get:
$$261y + 351 = 381y + 351$$
Subtracting 351 from both sides and subtracting 261y from both sides, we get:
$$0 = 120y$$
Dividing both sides by 120, we get:
$$y = 0$$
Finally, we can plug in y = 0 into the equation for x to get:
$$x = \frac{47y + 27}{10}$$
$$x = \frac{47(0) + 27}{10}$$
$$x = \frac{27}{10}$$
Therefore, the solution is x = $\frac{27}{10}$ and y = 0.Ответь+подробно.+7+(x-5y)+6x=3+(x+4y)+27


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili