
Вопрос задан 16.02.2019 в 13:46.
Предмет Математика.
Спрашивает Филимонова Аня.
cos( 2pi -x)-sin(3pi/2+x)=1


Ответы на вопрос

Отвечает Синдинова Кристина.
Cosx-(-cosx)=sin²x+cos²x
cosx+cosx-sin²x-cos²x
cosx-sin²x-cosx
-sin²x
Ответ: -sin²x
может так??
cosx+cosx-sin²x-cos²x
cosx-sin²x-cosx
-sin²x
Ответ: -sin²x
может так??



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте решим данное уравнение подробно.
Уравнение, которое вам дано, выглядит следующим образом:
cos(2π - x) - sin(3π/2 + x) = 1
Для начала, давайте заменим значения углов внутри функций cos и sin на их эквивалентные значения в интервале от 0 до 2π:
cos(2π - x) = cos(-x) (так как cos(2π) = 1 и cos(π) = -1) sin(3π/2 + x) = sin(π/2 + x) (так как sin(3π/2) = -1 и sin(π/2) = 1)
Теперь уравнение принимает вид:
cos(-x) - sin(π/2 + x) = 1
Заметим, что cos(-x) = cos(x) и sin(π/2 + x) = cos(x) (так как sin(π/2 + x) = cos(π/2 - (-x)) = cos(x))
Теперь уравнение можно переписать следующим образом:
cos(x) - cos(x) = 1
Поскольку оба члена уравнения равны, мы имеем:
0 = 1
Таким образом, данное уравнение не имеет решений в действительных числах.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili