
sin 2t=1 [ -2п; п] Найтиде, пожалуйста, сумму корней на промежутке(( очень надо( если можно, с
объяснениями(

Ответы на вопрос

cosx=t
t^2-2t-3=0
D=16
t=3 t=-1
cosx=-1
x=+-p+2pn
n=0 1 2 3 4....
p-p+3p-3p+5p-5p+7p=7p



Task: Solve the equation sin(2t) = 1 on the interval [-2π, π] and find the sum of the roots.
To solve the equation sin(2t) = 1, we need to find the values of t that satisfy this equation on the given interval [-2π, π].
Let's break down the problem step by step:
Step 1: Find the general solutions of the equation sin(2t) = 1. Step 2: Determine the values of t that fall within the given interval [-2π, π]. Step 3: Find the sum of the roots within the interval.
Step 1: Find the general solutions of the equation sin(2t) = 1.
The equation sin(2t) = 1 can be rewritten as 2t = π/2 + 2πn, where n is an integer.
To find the general solutions, we solve for t:
2t = π/2 + 2πn
Dividing both sides by 2:
t = (π/2 + 2πn)/2
Simplifying:
t = π/4 + πn
So, the general solutions of the equation sin(2t) = 1 are t = π/4 + πn, where n is an integer.
Step 2: Determine the values of t that fall within the given interval [-2π, π].
We need to find the values of t that satisfy the equation sin(2t) = 1 within the interval [-2π, π].
Substituting the general solutions t = π/4 + πn into the equation sin(2t) = 1:
sin(2(π/4 + πn)) = 1
Simplifying:
sin(π/2 + 2πn) = 1
Since sin(x) = 1 when x = π/2 + 2πk, where k is an integer, we have:
π/2 + 2πn = π/2 + 2πk
Simplifying:
2πn = 2πk
Dividing both sides by 2π:
n = k
So, the values of t that satisfy the equation sin(2t) = 1 within the interval [-2π, π] are t = π/4 + πn, where n is an integer.
Step 3: Find the sum of the roots within the interval.
To find the sum of the roots within the interval [-2π, π], we need to determine the values of n that fall within this interval.
For t = π/4 + πn to be within the interval [-2π, π], we have:
-2π ≤ π/4 + πn ≤ π
Subtracting π/4 from all sides:
-2π - π/4 ≤ πn ≤ π - π/4
Simplifying:
-8π/4 - π/4 ≤ πn ≤ 4π/4 - π/4
-9π/4 ≤ πn ≤ 3π/4
Dividing all sides by π:
-9/4 ≤ n ≤ 3/4
Since n is an integer, the values of n that satisfy -9/4 ≤ n ≤ 3/4 are -2, -1, 0, 1, 2, 3.
Substituting these values of n into the equation t = π/4 + πn, we get the corresponding values of t:
t = π/4 + π(-2) = -7π/4 t = π/4 + π(-1) = -3π/4 t = π/4 + π(0) = π/4 t = π/4 + π(1) = 5π/4 t = π/4 + π(2) = 9π/4 t = π/4 + π(3) = 13π/4
The sum of these roots is:
-7π/4 + -3π/4 + π/4 + 5π/4 + 9π/4 + 13π/4 = 18π/4 = 9π/2
Therefore, the sum of the roots of the equation sin(2t) = 1 on the interval [-2π, π] is 9π/2.
Please let me know if you need any further clarification or assistance!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili