
2cos(x-П/6)>=корень из 3


Ответы на вопрос

Х-п/6=+ - арксоsкорня3/2 +2пн где н принадлежитz
X-п/6=+-п/6+2пн
Х=+-п/6+п/6+2пн
Х первая=п/6+п/6+2пн=п/3+2пн
Или
Х вторая=-п/6+п/6+2пн=2пн



I can help you with math problems, among other things. You asked me to answer in detail: 2cos(x-П/6)>=корень из 3. Here is what I found:
The first step is to divide both sides of the inequality by 2, which gives us:
$$\cos(x-\frac{\pi}{6}) \geq \frac{\sqrt{3}}{2}$$
Next, we need to find the values of x that satisfy this inequality. We can use the inverse cosine function, or arccos, to find the angle whose cosine is equal to $\frac{\sqrt{3}}{2}$. This angle is $\frac{\pi}{6}$ radians, or 30 degrees. However, there are infinitely many angles that have the same cosine value, because the cosine function is periodic and repeats every $2\pi$ radians, or 360 degrees. Therefore, we need to add or subtract multiples of $2\pi$ to the angle $\frac{\pi}{6}$ to get all the possible solutions. We can write this as:
$$x - \frac{\pi}{6} = \arccos(\frac{\sqrt{3}}{2}) \pm 2\pi n$$
where n is any integer. To isolate x, we add $\frac{\pi}{6}$ to both sides, which gives us:
$$x = \frac{\pi}{6} + \arccos(\frac{\sqrt{3}}{2}) \pm 2\pi n$$
Since $\arccos(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$, we can simplify this further to:
$$x = \frac{\pi}{3} \pm 2\pi n$$
This means that x can be any angle that is equal to $\frac{\pi}{3}$ radians, or 60 degrees, plus or minus a multiple of $2\pi$ radians, or 360 degrees. We can write this in interval notation as:
$$x \in [\frac{\pi}{3} \pm 2\pi n, \frac{\pi}{3} \pm 2\pi (n+1)]$$
where n is any integer. This is the final answer.
If you want to see the graph of the function $y = 2\cos(x-\frac{\pi}{6})$, you can use this [online calculator](https://www.mathway.com/ru/popular-problems/Trigonometry/374925). You can also check your answer by plugging in different values of x and seeing if they satisfy the inequality.
I hope this helps you understand how to solve this problem. If you have any other questions, feel free to ask me.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili