
Вопрос задан 28.04.2018 в 06:07.
Предмет Математика.
Спрашивает Танатарова Дана.
В равнобедренном треугольнике ABC основание BC равно 12м,боковая сторона 10 м.Из вершины A проведён
отрезок AD,равный 6м и перпендикулярный плоскости треугольника ABC.найдите растояние от точки D до стороны BC

Ответы на вопрос

Отвечает Лядвик Михаил.
1. Искомый отрезок будет одним концом лежать на точке D (по условию), а вторым концом - на середине ВС (так как тр-к ABD= тр-ку ACD, тогда тр-к BCD будет тоже равнобедренный, а в нём искомый отрезок будет являться медианой, высотой и биссектрисой).
2. Остаётся найти стороны CD=BD. Это по т. Пифагора. Получится, что в тр-ке BСD CD=BD=кв.корень_из_136.
3. В тр-ке ВCD, где CD=BD=кв.корень_из_136, а ВС=12 искомый отрезок (пусть будет АМ) равен 10.
Есть вариант решения через нахождение отрезка АМ, потом через тр-к AMD. Везде т. Пифагора.


Топ вопросов за вчера в категории Математика

Математика 12

Математика 60

Математика 771

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili