Вопрос задан 11.02.2019 в 14:12. Предмет Математика. Спрашивает Прудник Катя.

Диагонали параллелограмма ABCD пересекаются в точке O, точки M и N — середины отрезков OA и OC.

Докажите, что углы MBN и MDN равны.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Луценко Лиза.
Пусть АС и BD - диагонали параллелограмма АВСD, которые пересекаются в точке О. По условию АМ=МО и ON=NC.
Т.к. диагонали параллелограмма точкой пересечения делятся пополам, то АМ=МО=ON=NC.
Рассмотрим четырехугольник MBND. BD и MN - его диагонали, О - точка их пересечения. По доказанному ВО=ОD и MO=ON. Значит, в 
четырехугольнике MBND диагонали, пересекаясь, точкой пересечения делятся пополам, поэтому MBND — параллелограмм.
В параллелограмме противоположные  противоположные углы равны. А это и есть требуемое равенство, т.е. ∠MBN = MDN.
Доказано.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос