 
Вопрос задан 06.02.2019 в 04:36.
Предмет Математика.
Спрашивает Баскова Соня.
Джентльмены всегда говорят правду знакомым и лгут незнакомым. собрались как-то 60 джентльменов и
каждый сказал каждому из остальных какую-то из фраз: в этой компании четное число людей мне незнакомых или в этой компании нечетное число людей мне незнакомых: может ли так быть, что вторая фраза была произнесена ровно 2013 раз? 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Харитонов Даня.
                
     Ладно попробую я. Джентльменов 60 человек, значит каждый из них общается с 59 человеками. Каждому он говорит следующее в этой компании четное число людей мне незнакомых или в этой компании нечетное число людей мне незнакомых. 
Обозначим первое утверждение через А, второе через В.
А= «в этой компании четное число людей мне незнакомых»
В= «в этой компании нечетное число людей мне незнакомых»
Всех джентльменов пронумеруем как Д1, Д2, Д3 ….Д60, а кол-во знакомых для каждого обозначим как ЗН1, ЗН2, ЗН3….ЗН60.
Единственное чем мы можем играться так это ко-вом знакомых для каждого джентльмена. Поэтому пробуем найти такое кол-во знакомых для каждого из джентльменов, чтобы утверждение «В» прозвучало 2013 раз.
Итак начнем.
Пусть у Д1 кол-во знакомых чётное.
Итак ЗН1 –ЧЕТНОЕ число,
значит кол-во незнакомых =59-ЗН1 и это число НЕЧЕТНОЕ
Тогда Д1 скажет знакомым В, а незнакомым А , но мы помним что кол-во знакомых у Д1 ЧЕТНОЕ, значит В – ЧЕТНОЕ, А – НЕЧЕТНОЕ кол-во для Д1
Пусть у Д2 кол-во знакомых НЕЧЕТНОЕ число,
Значит кол-во незнакомых =59-ЗН2 будет ЧЕТНОЕ число
Тогда Д2 скажет знакомым А, а незнакомым В, но мы помним что кол-во незнакомых у нас ЧЕТНОЕ кол-во, значит В- ЧЕТНОЕ, А – НЕЧЕТНОЕ кол-во для Д2
Получается вне зависимости от того какое кол-во ЧЕТНОЕ ИЛИ НЕЧЕТНОЕ ЗНАКОМЫХ У ДЖЕНТЕЛЬМЕНА, он произносит утверждение В – ЧЕТНОЕ КОЛВО РАЗ! Число 2013 – нечетное, поэтому не может быть получено ни при каких комбинациях знакомых у джентельменов если их общее кол-во 60!!!
Ответ НЕТ не может такого быть, для общего колва джентельменов 60, а точнее четного кол-ва.
                                        Обозначим первое утверждение через А, второе через В.
А= «в этой компании четное число людей мне незнакомых»
В= «в этой компании нечетное число людей мне незнакомых»
Всех джентльменов пронумеруем как Д1, Д2, Д3 ….Д60, а кол-во знакомых для каждого обозначим как ЗН1, ЗН2, ЗН3….ЗН60.
Единственное чем мы можем играться так это ко-вом знакомых для каждого джентльмена. Поэтому пробуем найти такое кол-во знакомых для каждого из джентльменов, чтобы утверждение «В» прозвучало 2013 раз.
Итак начнем.
Пусть у Д1 кол-во знакомых чётное.
Итак ЗН1 –ЧЕТНОЕ число,
значит кол-во незнакомых =59-ЗН1 и это число НЕЧЕТНОЕ
Тогда Д1 скажет знакомым В, а незнакомым А , но мы помним что кол-во знакомых у Д1 ЧЕТНОЕ, значит В – ЧЕТНОЕ, А – НЕЧЕТНОЕ кол-во для Д1
Пусть у Д2 кол-во знакомых НЕЧЕТНОЕ число,
Значит кол-во незнакомых =59-ЗН2 будет ЧЕТНОЕ число
Тогда Д2 скажет знакомым А, а незнакомым В, но мы помним что кол-во незнакомых у нас ЧЕТНОЕ кол-во, значит В- ЧЕТНОЕ, А – НЕЧЕТНОЕ кол-во для Д2
Получается вне зависимости от того какое кол-во ЧЕТНОЕ ИЛИ НЕЧЕТНОЕ ЗНАКОМЫХ У ДЖЕНТЕЛЬМЕНА, он произносит утверждение В – ЧЕТНОЕ КОЛВО РАЗ! Число 2013 – нечетное, поэтому не может быть получено ни при каких комбинациях знакомых у джентельменов если их общее кол-во 60!!!
Ответ НЕТ не может такого быть, для общего колва джентельменов 60, а точнее четного кол-ва.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			