Вопрос задан 06.02.2019 в 04:36. Предмет Математика. Спрашивает Баскова Соня.

Джентльмены всегда говорят правду знакомым и лгут незнакомым. собрались как-то 60 джентльменов и

каждый сказал каждому из остальных какую-то из фраз: в этой компании четное число людей мне незнакомых или в этой компании нечетное число людей мне незнакомых: может ли так быть, что вторая фраза была произнесена ровно 2013 раз?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Харитонов Даня.
Ладно попробую я. Джентльменов 60 человек, значит каждый из них общается с 59 человеками. Каждому он говорит следующее в этой компании четное число людей мне незнакомых или в этой компании нечетное число людей мне незнакомых.

Обозначим первое утверждение через А, второе через В.
А= «в этой компании четное число людей мне незнакомых»
В= «в этой компании нечетное число людей мне незнакомых»
Всех джентльменов пронумеруем как Д1, Д2, Д3 ….Д60, а кол-во знакомых для каждого обозначим как ЗН1, ЗН2, ЗН3….ЗН60.

Единственное чем мы можем играться так это ко-вом знакомых для каждого джентльмена. Поэтому пробуем найти такое кол-во знакомых для каждого из джентльменов, чтобы утверждение «В» прозвучало 2013 раз.
Итак начнем.

Пусть у Д1  кол-во знакомых чётное.
Итак ЗН1 –ЧЕТНОЕ  число,

значит кол-во незнакомых =59-ЗН1 и это число НЕЧЕТНОЕ
Тогда Д1 скажет   знакомым В, а незнакомым А , но мы помним что кол-во знакомых у Д1 ЧЕТНОЕ, значит В – ЧЕТНОЕ, А – НЕЧЕТНОЕ кол-во для Д1  

Пусть у Д2 кол-во знакомых НЕЧЕТНОЕ число,
Значит кол-во незнакомых =59-ЗН2 будет ЧЕТНОЕ число
Тогда Д2 скажет знакомым А, а незнакомым В, но мы помним что кол-во незнакомых у нас ЧЕТНОЕ кол-во, значит В- ЧЕТНОЕ, А – НЕЧЕТНОЕ кол-во для Д2  

Получается вне зависимости от того какое кол-во ЧЕТНОЕ ИЛИ НЕЧЕТНОЕ ЗНАКОМЫХ У ДЖЕНТЕЛЬМЕНА, он произносит утверждение В – ЧЕТНОЕ КОЛВО РАЗ!  Число 2013 – нечетное, поэтому не может быть получено ни при каких комбинациях знакомых у джентельменов если их общее кол-во 60!!!


Ответ НЕТ не может такого быть, для общего колва джентельменов 60, а точнее четного кол-ва.



0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос