
Вопрос задан 08.01.2019 в 02:33.
Предмет Математика.
Спрашивает Спиридонов Сергей.
Из нескольких одинаковых кубиков Вася сложил большой куб и покрасил его грани. Оказалось, что число
кубиков с одной покрашенной гранью равно числу кубиков, у которых покрашенных граней нет (и при этом не равно 0). Сколько маленьких кубиков использовал Вася?

Ответы на вопрос

Отвечает Чиркин Кирилл.
Заметим что существует три вида кубиков , которые расположены так что , одни имеют
покраски ,
покраски , и одну это угловые реберные и серединные кубики.
Если правильно понял задачу, он красит каждую грань , в один цвет , значит , выходит достаточно кубика
, и покрасить его две грани , тогда остается , 12 не покрашенных кубиков , то есть 
Если же понимать как все кубики , то очевидно учитывая выше сказанное , кубики будут не покрашенные , только те , которые находятся внутри кубика, если положить что размер куба
то центральных будет
, а те внутри кубика 
Приравнивая
То есть
кубиков
Извините если повторился
Если правильно понял задачу, он красит каждую грань , в один цвет , значит , выходит достаточно кубика
Если же понимать как все кубики , то очевидно учитывая выше сказанное , кубики будут не покрашенные , только те , которые находятся внутри кубика, если положить что размер куба
Приравнивая
То есть
Извините если повторился



Отвечает Прудаев Никита.
Пусть размер куба n x n x n квадратиков.
У 8 кубиков на углах - по 3 покрашенные грани.
У 12*(n - 2) = 12n - 24 кубиков вдоль ребер - по 2 покрашенные грани.
На каждой грани кубики, покрашенные на 2 и на 3 грани, идут по краям.
1 грань покрашена у кубиков внутри граней большого куба.
Это квадрат без рамки, то есть (n - 2)^2
Всего 6(n - 2)^2 = 6n^2 - 24n + 24 кубиков имеют по 1 покрашенной грани.
Это всё на кнешней поверхности куба. А совсем непокрашенные кубики находятся внутри, и их всего (n - 2)^3 = n^3 - 6n^2 + 12n - 8
Уравнение
n^3 - 6n^2 + 12n - 8 = 6n^2 - 24n + 24
n^3 - 12n^2 + 36n - 32 = 0
n^3 - 2n^2 - 10n^2 + 20n + 16n - 32 = 0
(n - 2)(n^2 - 10n + 16) = 0
(n - 2)(n - 2)(n - 8) = 0
Так как n не может равняться 2, то единственный ответ:
n = 8
Ответ: Вася использовал 8*8*8 = 512 кубиков.
У 8 кубиков на углах - по 3 покрашенные грани.
У 12*(n - 2) = 12n - 24 кубиков вдоль ребер - по 2 покрашенные грани.
На каждой грани кубики, покрашенные на 2 и на 3 грани, идут по краям.
1 грань покрашена у кубиков внутри граней большого куба.
Это квадрат без рамки, то есть (n - 2)^2
Всего 6(n - 2)^2 = 6n^2 - 24n + 24 кубиков имеют по 1 покрашенной грани.
Это всё на кнешней поверхности куба. А совсем непокрашенные кубики находятся внутри, и их всего (n - 2)^3 = n^3 - 6n^2 + 12n - 8
Уравнение
n^3 - 6n^2 + 12n - 8 = 6n^2 - 24n + 24
n^3 - 12n^2 + 36n - 32 = 0
n^3 - 2n^2 - 10n^2 + 20n + 16n - 32 = 0
(n - 2)(n^2 - 10n + 16) = 0
(n - 2)(n - 2)(n - 8) = 0
Так как n не может равняться 2, то единственный ответ:
n = 8
Ответ: Вася использовал 8*8*8 = 512 кубиков.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili