Вопрос задан 08.01.2019 в 00:56. Предмет Математика. Спрашивает Терещенко Серафим.

В треугольнике MNK со сторонами MN=5 см, NK=8 см, MK=9 см вписана окружность, касающаяся стороны MK

в точке Е. Найдите расстояние от точки Е до точки А биссекриссы NA( A принадлежит MK). Найдите отношение радиуса описанной около треугольника окружности к радиусу вписанной окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Егоров Денис.
Центр O вписанной окружности является точкой пересечения биссектрис треугольника.
Радиус вписанной в треугольник окружности равен:
r = √[(p-a)*(p-b)*(p-c)/p], где р - полупериметр треугольника;
  a,b и c - его стороны.
Радиус описанной в треугольник окружности равен:
R= (a*b*c)/(4√[р*(p-a)*(p-b)*(p-c)]). 
В нашем случае r=√[6*3*2/11] =(6/√11)см. R=360/(4*6√11)=15/√11см.
Тогда R/r = 15/6 = 2,5.
Теперь найдем АЕ. Раcстояние oт вершины C треугольника до точки, в которой вписанная окружность касается стороны, равно
l=p-c, где р - полупериметр, а с - сторона напротив угла С.
В нашем случае КЕ = р - MN = 11-5 = 6см.
Биссектриса NA делит сторону МК на отрезки МА и АК пропopциoнaльныe сторонам MN и NK, то есть MА/АК=MN/NK=5/8. Значит МК=13*x, откуда x=9/13. Тогда АК=8*9/13= 72/13 = 5и7/13. Следовательно, ЕА= ЕК - АK = 6/13см. 
Ответ: отношeние радиуса описанной около треугольника окружности к радиусу вписанной окружности равно 2,5
расстояние от точки Е до точки A равно 6/13см.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос