
Вопрос задан 11.11.2018 в 13:14.
Предмет Математика.
Спрашивает Ергазыулы Дима.
У приведённого многочлена четвёртой степени ровно четыре различных Корея , образующих
геометрическую прогрессию. Коэффициент многочлена при Х равен 6, свободный член равен 9. Чему может быть равен коэффициент при Х^3? Если возможному ответов несколько , укажите их в любом порядке. ОЛИМПИАДНОЕ ЗАДАНИЕ, ПОМОГИТЕ ПОЖАЛУЙСТА

Ответы на вопрос

Отвечает Рогожин Алексей.
Приведенный многочлен 4 степени:
x^4+bx^3+cx^2+6x+9=0
4 корня - действительные и образуют геометрическую прогрессию
(x - x1)(x - x2)(x - x3)(x - x4) = 0
x1 = a; x2 = a*q; x3 = a*q^2; x4 = a*q^3 (1)
Составим систему по теореме Виета для уравнения 4 степени
{ x1 + x2 + x3 + x4 = -b
{ x1*x2 + x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4 = c
{ x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4 = -6
{ x1*x2*x3*x4 = 9
Подставляем выражения из (1). Нас интересует 1, 3 и 4 уравнения.
{ a + a*q + a*q^2 + a*q^3 = -b
{ a*a*q*a*q^2 + a*a*q*a*q^3 + a*a*q^2*a*q^3 + a*q*a*q^2*a*q^3 = -6
{ a*a*q*a*q^2*a*q^3 = 9
Выносим общие множители и приводим подобные
{ a*(1 + q + q^2 + q^3) = -b
{ a^3*q^3*(1 + q + q^2 + q^3) = -6
{ a^4*q^6 = (a^2*q^3)^2 = 9
Выражаем (1 + q + q^2 + q^3) из 1 уравнения и подставляем во 2 уравнение
{ 1 + q + q^2 + q^3 = -b/a
{ a^3*q^3*(-b/a) = -b*a^2*q^3 = -6
{ a^2*q^3 = √9 = 3 или -3
Получаем
b1 = 6/(a^2*q^3) = 6/3 = 2
b2 = 6/(a^2*q^3) = 6/(-3) = -2
Ответ: коэффициент при x^3 может быть равен -2 или 2.
x^4+bx^3+cx^2+6x+9=0
4 корня - действительные и образуют геометрическую прогрессию
(x - x1)(x - x2)(x - x3)(x - x4) = 0
x1 = a; x2 = a*q; x3 = a*q^2; x4 = a*q^3 (1)
Составим систему по теореме Виета для уравнения 4 степени
{ x1 + x2 + x3 + x4 = -b
{ x1*x2 + x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4 = c
{ x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4 = -6
{ x1*x2*x3*x4 = 9
Подставляем выражения из (1). Нас интересует 1, 3 и 4 уравнения.
{ a + a*q + a*q^2 + a*q^3 = -b
{ a*a*q*a*q^2 + a*a*q*a*q^3 + a*a*q^2*a*q^3 + a*q*a*q^2*a*q^3 = -6
{ a*a*q*a*q^2*a*q^3 = 9
Выносим общие множители и приводим подобные
{ a*(1 + q + q^2 + q^3) = -b
{ a^3*q^3*(1 + q + q^2 + q^3) = -6
{ a^4*q^6 = (a^2*q^3)^2 = 9
Выражаем (1 + q + q^2 + q^3) из 1 уравнения и подставляем во 2 уравнение
{ 1 + q + q^2 + q^3 = -b/a
{ a^3*q^3*(-b/a) = -b*a^2*q^3 = -6
{ a^2*q^3 = √9 = 3 или -3
Получаем
b1 = 6/(a^2*q^3) = 6/3 = 2
b2 = 6/(a^2*q^3) = 6/(-3) = -2
Ответ: коэффициент при x^3 может быть равен -2 или 2.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Problem Analysis
We are given a polynomial of degree 4 with four distinct roots that form a geometric progression. The coefficient of the term with degree 1 is 6, and the constant term is 9. We need to find the possible values of the coefficient of the term with degree 3.Solution
Let's denote the four roots of the polynomial as a, ar, ar^2, and ar^3, where a is the first term and r is the common ratio of the geometric progression.Since the polynomial has four distinct roots, we can write it in factored form as follows:
(x - a)(x - ar)(x - ar^2)(x - ar^3) = 0
Expanding this equation, we get:
x^4 - (a + ar + ar^2 + ar^3)x^3 + (a^2r^3 + a^2r^2 + a^2r + ar^3 + ar^2 + ar)x^2 - (a^3r^6 + a^3r^4 + a^3r^2 + a^3 + a^2r^5 + a^2r^3 + a^2r + ar^4 + ar^2 + a)x + a^4r^6 = 0
Comparing this equation with the given polynomial, we can determine the coefficients of the polynomial:
- The coefficient of x^3 is -(a + ar + ar^2 + ar^3). - The coefficient of x^2 is a^2r^3 + a^2r^2 + a^2r + ar^3 + ar^2 + ar. - The coefficient of x is **-(a^3r^6 + a^3r^4 + a^


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili