Вопрос задан 21.10.2018 в 11:54. Предмет Математика. Спрашивает Курманов Артём.

Відстань між пунктами A і B дорівнює 435 км.Одночасно назустріч один одному із двох пунктів

виїхали два автомобілі і зустрілися через через 3 год. Знайдіть швидкусть одного з них на 5 км/год менша від швидкості другого
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дикий Саша.

Нехай швидкість 1-го автомобіля х, тоді швидкість 2-го - (х + 5).
За 3год 1-ий автомобіль проїде Зхя. а 2-ий — 3(х + 5).

 
Зх + 3(х + 5) = 435;
6х + 15 = 435;
6х = 420;
х = 70 - швидкiсть 1-го автомобiля.

швидкість другого — 75 км/год.
Відповідь. Швидкість першого автомобіля дорівнює 70 км/год, а швидкість другого — 75 км/год.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вирішення цієї задачі ми можемо скористатися формулою швидкості, яка визначається як відстань, поділена на час. Нехай швидкість одного автомобіля буде позначена як V1, а швидкість другого - як V2.

Визначення швидкостей автомобілів

За формулою швидкості, ми можемо записати: - Швидкість першого автомобіля: V1 = V2 + 5 км/год - Швидкість другого автомобіля: V2

Визначення часу зустрічі

Ми знаємо, що автомобілі зустрілися через 3 години. Тому ми можемо записати: - Час: 3 год

Визначення відстані

Ми також знаємо, що відстань між пунктами A і B дорівнює 435 км. Тому ми можемо записати: - Відстань: 435 км

Визначення швидкостей автомобілів на основі відстані і часу

За формулою швидкості, ми можемо записати: - Швидкість першого автомобіля: V1 = Відстань / Час - Швидкість другого автомобіля: V2 = Відстань / Час

Знаходження швидкостей автомобілів

Замінюючи відстань і час у формулах швидкості, ми отримуємо: - Швидкість першого автомобіля: V1 = 435 км / 3 год - Швидкість другого автомобіля: V2 = 435 км / 3 год

Знаходження швидкостей автомобілів на основі відомих швидкостей

За формулою швидкості, ми можемо записати: - Швидкість першого автомобіля: V1 = V2 + 5 км/год - Швидкість другого автомобіля: V2

Розв'язання системи рівнянь

Ми можемо вирішити цю систему рівнянь, підставивши значення V2 у перше рівняння: - V1 = (V2 + 5) км/год - V2 = V2 км/год

Знаходження швидкостей автомобілів

Розв'язавши систему рівнянь, ми отримуємо: - V1 = (V2 + 5) км/год - V2 = V2 км/год

Висновок

Отже, швидкість першого автомобіля (V1) дорівнює швидкості другого автомобіля (V2) плюс 5 км/год.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос