
геометрическая прогрессия bn задана условиями b1=4 Bn+1=2bn, Найдите b7Ответ должен получить 256 но
это не точно

Ответы на вопрос




Geometric Progression
A geometric progression is a sequence of numbers in which each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio. In this case, the geometric progression is defined by the following conditions:
- b1 = 4 - Bn+1 = 2bn
To find the value of b7, we can use the formula for the nth term of a geometric progression:
bn = b1 * r^(n-1)
where bn is the nth term, b1 is the first term, r is the common ratio, and n is the position of the term.
Finding b7
To find b7, we substitute the given values into the formula:
b7 = b1 * r^(7-1)
Substituting b1 = 4 and Bn+1 = 2bn, we have:
b7 = 4 * r^6
Now, we need to find the value of the common ratio, r. We can do this by using the given condition Bn+1 = 2bn:
Bn+1 = 2bn
Substituting n = 6, we have:
B7 = 2b6
Since B7 is the next term after b6, we can substitute B7 = 2b6 into the formula for bn:
2b6 = b1 * r^(6-1)
Substituting b1 = 4, we have:
2b6 = 4 * r^5
Now, we have two equations:
1. b7 = 4 * r^6 2. 2b6 = 4 * r^5
We can solve these equations simultaneously to find the value of r.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili