Вопрос задан 12.10.2018 в 14:41.
Предмет Математика.
Спрашивает Савин Саша.
Если в двузначном числе переставить цифры, то оно увеличится на 18 . Найдите разность цифр этого
числа.Ответы на вопрос
        Отвечает Ахмадулина Ирина.
                
     Было ab = 10a+b
стало ba = 10b+a
ba-ab =18
10b+a-(10a+b)=18
10b+a-10a-b =18
9b-9a =18
9(b-a)=18
b-a = 18/9
b-a = 2
                                        стало ba = 10b+a
ba-ab =18
10b+a-(10a+b)=18
10b+a-10a-b =18
9b-9a =18
9(b-a)=18
b-a = 18/9
b-a = 2
            Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
                
    Пусть исходное двузначное число равно AB, где A и B - это цифры числа.
Если переставить цифры местами, то получим число BA. Также дано, что это число будет больше исходного на 18. Запишем это в виде уравнения:
BA = AB + 18
Разложим число AB на сумму десятков и единиц:
AB = 10A + B
Аналогично, разложим число BA:
BA = 10B + A
Подставим эти значения в уравнение:
10B + A = 10A + B + 18
Упростим уравнение:
10B - B = 10A - A + 18
9B = 9A + 18
Разделим обе части уравнения на 9:
B = A + 2
Таким образом, разность цифр этого числа равна 2.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			