Вопрос задан 10.10.2018 в 19:44. Предмет Математика. Спрашивает Елпейсов Жанхожа.

Разложите многочлен на множители 27+ a3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чернова Александра.
27 + а^3 = 3^3 + а^3 = ( 3 + а )( 9 - 3а + а^2 )
0 0
Отвечает Узун Ульяна.
27 + а^3 = а^3 + 3^3
Воспользуемся формулой суммы кубов:
а^3 + 3^3 = (а+3)(а^2-3а+9).
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Да, конечно! Разложение многочлена на множители означает представление многочлена в виде произведения более простых многочленов. В данном случае у нас есть многочлен \(27a^3\), который можно представить в виде произведения.

Многочлен \(27a^3\) можно представить как произведение трех множителей, где каждый множитель содержит одну из переменных \(a\):

\[27a^3 = 3^3 \cdot (a)^3\]

Таким образом, разложение данного многочлена на множители: \(27a^3 = (3a)^3\).

Также можно записать это разложение в виде произведения множителей в канонической форме:

\[27a^3 = 3^3 \cdot a^3 = (3a)^3\]

Так что, многочлен \(27a^3\) разлагается на множитель \(3a\), возведенный в третью степень.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос