Вопрос задан 07.10.2018 в 11:26. Предмет Математика. Спрашивает Матвеев Валерий.

Отрезок DM - биссектриса треугольника CDE. Через точку М проведена прямая, параллельная стороне CD

и пересекающая сторону DE в точке N. Найдите углы треугольника DMN, если угол CDE = 68 градусов. Помогите пж
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маратовна Улжан.
Ответ в вложении. Если что-то непонятно, пиши.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Bisector of Triangle CDE and Angles of Triangle DMN

To find the angles of triangle DMN, we need to consider the given information about the triangle CDE and the line segment DM, which is the bisector of triangle CDE.

Given: - Triangle CDE with angle CDE measuring 68 degrees. - Point M on the bisector of triangle CDE. - Line MN, parallel to side CD, intersects side DE at point N.

To find the angles of triangle DMN, we can use the properties of parallel lines and the angle bisector theorem.

Angle Bisector Theorem

The angle bisector theorem states that in a triangle, the angle bisector divides the opposite side into segments that are proportional to the lengths of the other two sides.

In triangle CDE, the line segment DM is the angle bisector of angle CDE. This means that the ratio of the lengths of the segments DM and ME is equal to the ratio of the lengths of the sides CD and DE.

Let's denote the length of segment DM as x and the length of segment ME as y.

According to the angle bisector theorem, we have:

DM/ME = CD/DE

Since line MN is parallel to side CD, we can use the alternate interior angles theorem to determine the relationship between the angles of triangle DMN and triangle CDE.

Alternate Interior Angles Theorem

The alternate interior angles theorem states that when a transversal intersects two parallel lines, the alternate interior angles are congruent.

In triangle DMN, angle DMN is congruent to angle CDE because they are alternate interior angles formed by the transversal line MN and the parallel lines CD and MN.

Therefore, we can conclude that:

angle DMN = angle CDE = 68 degrees

Now, let's find the other angles of triangle DMN.

Finding the Angle DNM

To find angle DNM, we can use the fact that the sum of the angles in a triangle is 180 degrees.

In triangle DMN, we have:

angle DMN + angle DNM + angle MND = 180 degrees

Substituting the known values:

68 degrees + angle DNM + angle MND = 180 degrees

Simplifying the equation:

angle DNM + angle MND = 112 degrees

Since angle DNM and angle MND are adjacent angles, their sum is equal to 112 degrees.

Conclusion

To summarize, the angles of triangle DMN are as follows: - angle DMN = 68 degrees - angle DNM + angle MND = 112 degrees

Please note that the specific values of angle DNM and angle MND cannot be determined without additional information about the lengths of the sides of triangle CDE or the position of point M on the bisector of angle CDE.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос