
Катер прошел по течению реки расстояние между двумя пристанями за 6(целых) 1-числитель 2
-знаменатель(дробью)часов со скоростью 300 м/мин.Сколько времени потребуется катеру на обратный путь,если скорость течения реки 2,5 км / ч?

Ответы на вопрос

Скорость по по течнию равна 18 км/ч
х- собственная скрость
х+2,5 скорость по течению
значит скорость катера 18-2,5= 15,5 км/ч
против течения 15,5-2,5=13 кмч
наййдём путь 6,5*18= 117 км путь
177 :13=9 часов



Для решения этой задачи воспользуемся формулой \( V = \frac{S}{t} \), где \( V \) - скорость, \( S \) - расстояние, \( t \) - время.
Катер двигался по течению реки, поэтому его скорость относительно воды равна разности скорости катера и скорости течения реки.
Сначала найдем расстояние между пристанями. Обозначим это расстояние как \( S \).
\[ S = V \cdot t \]
Где: - \( V = 300 \, \text{м/мин} \) - скорость катера относительно воды, - \( t = 6 \frac{1}{2} = 6.5 \) часов.
\[ S = 300 \, \text{м/мин} \cdot 6.5 \, \text{ч} \cdot \frac{1000 \, \text{м}}{1 \, \text{км}} = 1,950,000 \, \text{м} \]
Теперь, чтобы найти время на обратный путь, нужно учесть скорость течения реки. Обозначим время на обратный путь как \( t_{\text{обратно}} \).
\[ V_{\text{катера}} - V_{\text{течения}} = \frac{S}{t_{\text{обратно}}} \]
Где: - \( V_{\text{катера}} \) - скорость катера относительно воды (300 м/мин), - \( V_{\text{течения}} \) - скорость течения реки (2.5 км/ч).
Переведем скорость течения реки в м/мин:
\[ V_{\text{течения}} = 2.5 \, \text{км/ч} \cdot \frac{1000 \, \text{м}}{1 \, \text{км}} \cdot \frac{1 \, \text{ч}}{60 \, \text{мин}} = 41.\overline{6} \, \text{м/мин} \]
Теперь подставим значения в уравнение:
\[ 300 \, \text{м/мин} - 41.\overline{6} \, \text{м/мин} = \frac{1,950,000 \, \text{м}}{t_{\text{обратно}}} \]
Решим уравнение относительно \( t_{\text{обратно}} \):
\[ t_{\text{обратно}} = \frac{1,950,000 \, \text{м}}{300 \, \text{м/мин} - 41.\overline{6} \, \text{м/мин}} \]
\[ t_{\text{обратно}} \approx \frac{1,950,000 \, \text{м}}{258.3 \, \text{м/мин}} \approx 7542.26 \, \text{мин} \]
Примерно через 7542 минуты (или около 5 дней, 6 часов и 22 минуты) катер вернется на пристань.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili